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EXECUTIVE SUMMARY

Classification of signal modulation types has received increasing attention over
the last two decades as numerous civilian applications have joined military ones.
Modulation classification can be used to identification purposes, monitoring and/or
detecting transmissions, surveillance, etc... The work presented in this report specifically
focuses on the classification of digital modulation schemes of types [2,4,8]-PSK, [2,4,8]-
FSK and [16,64,256]-QAM. A significant body of work already exists in this area,
however most of it deals with either a small number of symbol states M, relatively clean
channel characteristics, and/or requires large amounts of data.

This study first investigates the selection of robust and well-defined higher-order
statistics-based class features, and next designs a classification procedure which is
applied under low SNR levels, realistic fading and “real-world” type multipath
propagation channel conditions.

The hierarchical tree-based classification approach selected in the study leads to a
relatively simple overall scheme with few parameters needed to differentiate between the
various modulation types under consideration. Back-propagation neural network units
are adopted at each tree node because they offer the flexibility needed to cope with
varying propagation environments, as is the case in real-world communications.

The selection of higher-order statistics parameters as class features for the neural
network classification units is shown to be effective and robust for all classification
schemes, except when differentiating between the various MQAM types considered.

Simulations show that M-QAM types may be so affected by multipath and fading that
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higher-order statistic parameters become of very limited use. While being part of the
hierc=chical procedure, the identification of specific MQAM types identification is
conducted via equalization algorithms and combines the generic blind equalization CMA-
FSE and constellation-specific Alphabet Matched equalization algorithms.

The overall hierarchical classifier is extensively tested in various propagation
situations and signal-to-noise ratio (SNR) levels. Simulations show overall classification
performances to be strongly affected by the by the amount of multipath distortion and
noise in the transmission channels. For example, overall classification performances of
99% at 20dB down to 65% at 8dB for rural area propagation environments can be
observed, while in more highly distorted channels such as urban propagation
environments, overall classification performances are only 82% at 20dB down to 62% at
8dB. Results also illustrate the much higher sensitivity of high-order MQAM types to
fading and multipath propagation distortions than the other modulation types considered
in the study are. Results show good performances may be obtained in medium to high

SNR levels only to differentiate between high-order QAM modulation types.
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I. INTRODUCTION

A. OBJECTIVES

Classification of signal modulation types has received increasing attention over
the last two decades as numerous civilian applications have joined military ones.
Modulation classification can be used to identification purposes, monitoring and/or
detecting transmissions, surveillance, etc... This work specifically focuses on the
classification of digital modulation schemes of types M-PSK, M-FSK, M-QAM, where
the number of states M varies. A significant body of work exists in this area, however
most of it deals with either a small number of symbol states M, relatively clean channel
characteristics, and/or requires large amounts of data. This study first investigates the
selection of robust and well-defined class features, and next designs a classification
procedure which is applied under low SNR levels, realistic fading and “real-world” type

multipath propagation channel conditions.

Chapter I reviews some of the most recent work done in the area of digital
modulation classification. Chapter II introduces the concept of a digital communication
system and some of the most commonly used modulation schemes that are considered in
this study, namely M-FSK, M-PSK and M-QAM types. Chapter III discusses the theory
of propagation and presents its impact on the quality of received signals. In Chapter IV,
the concept of signal equalization is defined, and two major methods that will be
extensively used in this study, are analytically described and tested. Chapter V presents

the concept of higher-order statistics, and more specifically focuses on statistical




moments and cumulants selected as identification tools in the proposed digital
modulation identification set-up. Simulations investigate the behavior of these tools and
their robustness under variable propagation conditions. Chapter VI describes the basic
principles of neural networks, which form the core of the proposed classification scheme.
In Chapter VII the proposed classifier is analytically described and evaluated with
extensive simulations. Chapter VIII summarizes the results and recommends possible

extensions to the classification scheme presently implemented.

B. BACKGROUND

The recognition of digital modulation types has been investigated extensively
over the last twenty years. Numerous different approaches using the time and/or the
frequency domain have been proposed, and those can be subdivided in two main general
families; decision-theoretical and statistical pattern recognition approaches. Decision
theoretical approaches require a statistical description of the signals considered and
usually involve the definition of likelihood ratio tests, while pattern recognition
approaches require the definition of small sets of class features sufficient to differentiate
between the different modulation types. This section briefly reviews some of the most
recent work done in those areas.

Decision theoretical approaches are based on obtaining a statistical description of
the signals considered, and lead to the derivation of optimal classifiers using Bayes rule.

However, such optimal classifiers are usually extremely complex, and approximations




needed to obtain tractable solutions. Sub-optimal solutions were first proposed by
Polydoros & Kim to classify BPSK and QPSK signals [POK90]. This line of approach
was later extended to other modulation types by Polydoros & co-authors [CLP94,
LAP95, HUP95, CLP96]. Modulation classification schemes derived under this
approach have extremely good performances for digital modulation types with relatively
low number of states. However, these schemes usually require some type of a-priori
signal information, making the whole process less practical. Lay & Polydoros further
investigated the case of signals in ISI environments [LAP95]. Results showed good
performances when the channel is known, however performances degrade significantly
when the channel characteristics are unknown and cannot be compensated for.

Wei & Mendel also considered a maximum likelihood approach to classify phase
amplitude signals under ideal conditions, i.e., when pulses are rectangular, the additive
noise is white and Gaussian and of known power. Their work derives an ideal classifier
which can be used as a reference in non-ideal environments [WEMO0O]. They also
proposed a fuzzy logic modulation classifier where they investigated the performance of
M-QAM modulation schemes (M <32) in impulsive noise [WEM99, WEI98]. Their latter
work may fall somewhat in the category of pattern recognition approaches as they use the
constellation information directly.

Soliman & Hsue proposed to use class features statistical moments to classify CW
and M-PSK signals in additive white Gaussian noise [SOH92]. Their approach lead to an
hypothesis test based on the n™ order moments of the signal phase and achieves
classification performances close to 100% for SNR levels greater than 10dB. However,

no simulation on real-world propagation models has been reported. Yang & Soliman




later proposed a sub-optimal decision theoretic classifier for MPSK signals in additive
white Gaussian noise based on the approximation of the signal pdf [YAS97]. Results
showed better performances than in [SOH92], as more information gets actually used in
the latter work.

As mentioned before, pattern recognition type describe class information using
selected sets of features, where the selection may be done empirically or not. As a result,
this type of approach is more tractable than the decision theoretical approach, as the
designed has control over what features to select, and numerous schemes have been
proposed over the years.

Ghani & Lamontagne among others selected frequency information as class
features and a back-propagation neural network to classify FSK, BPSK, ASK, QPSK and
a few analogue modulation types [GAL93]. More sophisﬁcated classifiers such as HMMs
have also been investigated with frequency-based class features and reported to lead to
better performances than tree-based classifiers [SKR97]. Kremer & Shields considered
time information, such as skewness, kurtosis, power, to classify 4FSK, MFSK, OQPSK,
and 8PSK in additive white Gaussian noise [KRS97]. They showed good classification
performances for SNR levels larger than 5dB.

Wavelet-based information has been used to classify modulation types. Ta
considered wavelet packet information as class features to differentiate between ASK,
2&4-FSK, 2&4-PSK modulation types in additi\;e white Gaussian noise [TA94]. Hong &
Ho, Ho & co-authors, and Lin & Kuo among others considered the Wavelet transform to
classify QAM, PSK and/or FSK sigpnals in additive white Gaussian noise [HPC95,

HPCO00, HOK99, LIK95]. Ta and Ho & co-authors take advantage of the wavelet




transform capabilities to extract wideband transient information, as may occur at pulse
changes. However, in real-world scenarios, pulses are bandlimited which in turn may
make such transient more difficult to extract. Other authors have also used wavelet
coefficients as class features. However, note that the decimated wavelet transform is not
shift-invariant, which is a very important property to have in classification applications.
As a result, reported results have usually assumed perfect synchronization, which would
not be realizable in practical situations.

Azzouz & Nandi considered both hierarchical classification tree and neural
network approaches to classify analogue and digital modulation schemes. The digital
modulation types considered were those with constant amplitude such as CW M-PSK and
M-FSK, were the number of states was small (Iess or equal to 4) [AZN95a, AZN95b,
AZNO96, AZN97]. Statistical characteristics such as the power density or the standard
deviation of the normalized centered instantaneous amplitude of the signal and others
were selected as class features. Results showed this simple scheme to have 90% correct
classification rates for signals in additive white Gaussian noise at SNR levels equal to
10dB or higher. They also show that better performances are obtained with the neural
network implementation than with the hierarchical tree implementation, especially at low
SNR levels. However, again no simulation results for signals transmitted using “real-
world” propagation channels situations were reported in their work.

Beidas & Weber considered the classification of M-FSK types in additive white
Gaussian noise using higher-order correlation quantities. They show that performances
approximate those of likelihood ratio tests in a white Gaussian noise environement

[BEW95a, BEW95b, BEW9E].




Ketterer, Jondral & Costa proposed a two-step time-frequency approach to the
problem [KJC99]. First, the carrier frequency is estimated with autoregressive modeling.
Next, the time-frequency information provided by the Cross-Margenau-Hill distribution
[HPC95] is applied to estimate phase shifts, frequency shifts and amplitude shifts
allowing the separation of M-PSK, M-FSK and M-QAM signals respectively.
Simulations show modulation classification performance over 97% for SNR levels larger
than 10dB. Unfortunately no results were reported for simulations with “real-world”
propagation channels. Bi-spectrum information has also been proposed as a class
identification tool by Hill et. al. [HAC97].

Huo & Donoho proposed a very different method to classify 4-QAM and 6-PSK
[HUD98]. The authors proposed a classifier designed to minimize the Hellinger distance
[BER77] between the empirical distribution of the intercepted signal and the true signal
density function. The proposed scheme leads to recognition performances equal to 100%
for SNR levels equal to 15dB or higher. However, such performance requires the
knowledge of the channel model, and the recognition performances drop significantly
when dealing with unknown channels.

Histograms and amplitude and/or phase pdf information have also been selected
for classification applications. Cockburn & Hang, Schreyogg & Reichert considered
such approaches to classify between various MQAM schemes in additive white Gaussian
noise [COH97, SCR97a]. Taira considered the classification of 16&64QAM signals in
fading channel environment using the signal amplitude [TAIOO]. The author proposed an
approximation to the true amplitude pdf and showed 100% classification rates for SNR

levels over 20dB.




The constellation shape has also been used directly in various approaches. Wood
et. al. used the Radon transform to identify the type of signal constellation [WRT98].
Mobasseri considered a pattern recognition approach and uses the constellation shape
information obtained from the received signal to estimate the digital modulation type by
applying fuzzy c-means cluster analysis [MOBOO]. This scheme works well to separate
low order constellations such as QPSK, 8-PSK and 16-QAM and provides correct
recognition of over 90% for signal-to-noise ratios larger than 5dB. However, no results
are provided for signals transmitted over real world propagation channels that might
rotate and severely distort the signal’s constellation.

Matrix-based approaches have been reported by a few researchers. A SVD-based
approach to the classification of MSK and QPSK modulation schemes in additive white
Gaussian noise was proposed by Marinovich et. al [MNCXX]. In this scheme the
modulation identification is obtained from the singular values of a specific data matrix
which structure requires the symbol length information. Results show adequate
performances down to -5dB. Hero & Hadinejad-Mahram proposed to use the
eigendecomposition information obtained from a signal-based “power moment” matrix to
differentiate between MPSK, FSK, and QAM [HEH98]. HoWever, no classification
performance is reported.

Marchand, Martret & Lacoume used cumulants and fnoments to build a matched
filter classification system that has an exceptional performance, close to 100% of
accurate recognition for SNR levels equal to 0dB or higher [MML97]. This classifier is
tested to identify 4-PSK versus 16-QAM but may easily be modifiec} to incorporate more

modulation schemes. Again, no simulation on fading multipath channels is conducted.




High-order statistics and cyclostationary concepts have been considered by
Gardner and others for modulation classification applications [SCS94, GAS88, SPO96,
SP099]. Spooner proposed cyclic cumulant-based features for modulation classification,
and used these parameters to define class-specific feature matrices tested against
cataloged class feature matrices obtained from known modulation types. Results show
good classification performances for signals in additive white Gaussian noise [SPO96,
CADO0O]. However, Cadenazzi showed that these performances degrade significantly
when dealing with real-world signals [CADOO].

Marchand investigated a simpler scheme than that of Spooner in his dissertation
work, where he considered moments and cumulants for classifying purposes [MAROS].
He proposed a computational inexpensive cumulant-based scheme to classify M-PSK and
M-QAM signal types, and investigated the robustness of the scheme with respect to
varying level of additive noise and number of symbols. Marchand also considered
transmission (i.e., pulse shaping) filter effects, which may undermine the cyclostationary
nature of the information on which the whole classification set-up is based upon. His
scheme is based on a combination of second and fourth-order cumulants and the
classification criterion designed to maximize the difference between the modulation types
considered. Results showed that using cyclostationary information can improve
classification performances significantly when dealing with colored noise.

Swami & Sadler [SAS00] also selected cumulants for class features. They
introduced a simple hierarchical tree classifier scheme that uses second and fourth-order
cumulants to classify M-PSK, PAM, and M-QAM signals. Simulations run on BPSK,

4PAM, 4PSK, 8PSK, V32, V29, V29c, and 16QAM in additive white noise show




excellent recognition rates for SNR levels higher than 8dB when the sample size required
to estimate the cumulants is large enough. They do not consider effects due to the pulse
shaping filter, or nonlinear transmission filters. However, they do investigate residual
channel effects, and show that larger sample size is required to compensate for them.
Their encouraging c‘onclusion is that the method may easily be expanded to a higher level
of constellations such as 64-QAM, by increasing the order of the cumulants selected for
class features.

Finally, Barbarossa, Swami, Sadler & Spadafora recently proposed the Alphabet
Matched Algorithm (AMA), which is an iterative gradient descent scheme where the cost
function to be minimized is based on a pre-determined signal constellation structure M-
PSK and M-QAM signals [BAROO]. Their results show that the AMA is able to classify
higher order constellations (such as 64-QAM) propagated through a linear channel in
SNR levels of 30dB perfectly. This method is further analyzed and implemented in this

study [Chapter IV, Sections B & C].

C. REQUIRED SOFTWARE

MATLARB, version 5.3 was used to generate the data and conduct the simulations
while EXCEL 2000 has been utilized to store all simulation results. We attempted to
duplicate real-world conditions by selecting transmission channel models obtained from
field measurements [SPIO0]. Further details regarding the transmission channel types

considered are presented in Appendix C.
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II. DIGITAL COMMUNICATION SYSTEMS AND MODULATION SCHEMES

This chapter presents a brief overview of basic communication systems and

popular digital modulation schemes.

A. INTRODUCTION TO DIGITAL COMMUNICATION SYSTEMS

With the explosion in the computer industry of the last fifteen years we now have
the ability to process digital information with speeds that no one could have ever
imagined a few decades ago. The basics of a digital communication system are described
in Figure II-1. Communication basically means transmission of binary information
sequences {b.}. Such sequences are encoded prior to transmission to make the
transmitted signal more robust to noise, interference and other channel degradations.

Next, the resulting signal d,(¢) is modulated by a sinusoidal carrier and passed through a

transmitter filter to limit the signal bandwidth prior to transmission. The transmitted

signal s, (¢) does not normally reach the receiver without distortion, which can be due to

white gaussian, colored noise or other narrowband signal interferences.

This study will utilize baseband signals exclusively, as heterodyning down
transmitted signals is usually conducted at the receiver to decrease the needed sampling
rates prior to further processing. Therefore, we will assume that the carrier has been
estimated correctly and that no distortion in the received signal is produced as a result of

estimation errors in the carrier frequency.
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Figure II-1. Digital Communication System Model.

B. DIGITAL MODULATION TECHNIQUES

1. Introduction

Almost all modern communication systems use digital modulation techniques as
they have many advantages over analog modulation schemes. For instance, digital

modulation techniques offer greater noise immunity and robustness to channel
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distortions, easier multiplexing of various forms of information (e.g. voice and data), and
greater security [MPRGOO]. Several factors influence the choice of a digital modulation
scheme. Ideally, a desirable modulation scheme provides low bit error rates at low
received signal-to-noise ratios, has a good performance in multipath and fading
conditions, occupies a minimum bandwidth, and is easy and cost-effective to implement.
Existing modulation schemes do not simultaneously satisfy all of these requirements.
Some are better in terms of the bit error rate performance, while others are better in terms
of bandwidth efficiency. As a result, trade-offs need to be made when selecting a digital
modulation depending on the demands of the particular application. For example, higher
level modulation schemes (M-ary keying) require small bandwidth but higher received
power than other schemes.

Some of the most widely used digital modulation techniques are summarized in
Table II-1 below. This study will concentrate on 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK,

8-PSK, 16-QAM, 64-QAM and 256-QAM modulation schemes.

Linear Modulation Constant Envelope Combined Linear and Spread Spectrum
Techniques Modulation Constant Envelope Modulation
Techniques: Modulation Techniques
Techniques
BPSK : Binary Phase BFSK : Binary MPSK: M-ary Phase DS-SS : Direct
Shift Keying Frequency Shift Keying Shift Keying Sequence Spread
Spectrum
DPSK : Differential MSK : Minimum Shift QAM : M-ary FH-SS : Frequency
Phase Shift Keying Keying Quadrature Amplitude Hopped Spread
Modulation Spectrum
QPSK : Quadrature GMSK : Gaussian MFSK : M-ary
Phase Shift Keying Minimum Shift Keying | Frequency Shift Keying

Table II-1. Popular Digital Modulation Schemes.




2. M-ary Frequency Shift Keying Modulation Scheme

M-FSK (or M-ary FSK) transmits digital data by shifting the output frequency
between M predetermined values (i.e., states). M-FSK is not particularly spectrally
efficient, but offers advantages such as immunity to amplitude noise, bit rate higher than
baud rate, and constant transmitter power [GREO0O]. M-FSK requires less transmitted
power for the same information rate than other digital modulation schemes do because it
does not contain any AM components, as is the case for example for M-QAM. Thus, M-
FSK allows transmitter power amplifiers to operate close to their saturation levels. In M-

FSK modulation the M different frequencies on which the transmitted message is

quantized are given by:
/4
()= g(t)cos[F(nc +k)t], 0<1<T,k=12,....M, 2.1)

where g(t) is the signal pulse shape, T is the symbol duration, and f, =n_/2T is the

carrier frequency for a fixed integer n, [WIL99] .

3. M-phase Shift Keying Modulation Scheme

The most common form of modulation in digital communication is M-ary phase
shift keying (M-PSK). With this method, symbols are distinguished from one another by

the phase changes, while the amplitude remains the same. A digital symbol is represented
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by one of M different phase states of a sinusoidal carrier. The typical M-PSK waveform

1s given by:
s, ()=g(t)-cos(2r f .t +%(k -1)),
(2.2)
0<t<T, k=12,...M,
where g(t) is the signal pulse shape, M is the number of the possible phases of the carrier,
T is the symbol duration and f, is the carrier frequency [PRO95, pp.177,eq.4.3-11].

Figure II-2 plots the constellations for 2-PSK, 4-PSK, and 8-PSK modulation schemes.
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Figure II-2. 2-PSK, 4-PSK and 8-PSK constellations.
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4. M-QAM Modulation Scheme

QAM is designed to transmit two separate signals independently with the same
carrier frequency by using two quadrature carriers cos(27 f.t) and sin(27 f,t) . These two
separate modulated signals are then added and transmitted. This structure of QAM allows
for M discrete amplitude levels (M-QAM), and thus permits a symbol to contain more
than one bit of information. The general form for a M-QAM signal is given by:

s,(t)=a,g(t)cos(2rm f.t)—b,g(t)sin(2x f 1),
0<t<T , k=12,....M, (2.3)
where g(t) is the signal pulse shape, and g, and b, are the information-bearing signal
amplitudes of the quadrature carriers [PRO95, pp.179, eq.4-3-19]. 16-QAM, 64-QAM
and 256-QAM constellations are shown in Figure II-3 below.

QAM is standardized in terms of the number M of discrete levels number which is
chosen to be a power of 2 so that each symbol can be represented by a specific number of
bits. For example, in 256-QAM, the number of discrete levels M=256= 2%, and every
symbol is encoded with 8 bits. Therefore, higher order M-QAM schemes are much more
spectrally efficient, being however, quite susceptible to noise and fading. As a result,
higher order M-QAM schemes are more often used nowadays in cable transmission

systems rather than wireless $ystems where transmission degradation may be worse.
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16-QAM Constsllation
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Figure II-3. 16-QAM, 64-QAM and 256-QAM constellations.
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5. Pulse Shaping Filters

Most digital communication signals, especially wireless ones, have limited
bandwidth available to allow for simultaneous transmission of several messages. As a
result, the modulated signal is passed through a transmission filter prior to transmission.
In addition, transmission channels are usually band-limited, which leads to inter-symbol
interference (ISI) in the transmitted signal. Therefore, it is important that the transmission
filter be designed not to further increase the amount of ISI in the transmitted signal.
Raised cosine filters are designed so that the ISI introduced by the filter band-limited
structure is equal to zero when sampled at correct sample points [EVAOO]. The raised

cosine impulse response and frequency response are respectively given by:

cos(irﬁt-)
x(t)=sinc(—) | ——%— |,
1— 2Pty 24)
T
r T 0Sf<12;]’é
T o P 128 B 4B
X(f)= 2{1 cosliﬂ(f T }} 2 <f< 5 (2.5)
1+p
t 0 f>7,
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corresponding pulses for =0, 0.5 and 1

where T is the symbol period and S € [0,1] is called the roll-off factor, or excess
idth. Fig

bandwidth. Figure II-4 shows the raised cosine filter spectral characteristics and the
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ITII. WIRELESS TRANSMISSION CHANNELS

Chapter II briefly discussed digital modulation fundamentals. Chapter III,

considers issues relevant to radio-wave propagation.

A. DESCRIPTION

Wireless environments have some inherent peculiarities concerning the signal
transmission. There is a certain degree of randomness incorporating all those natural and
sometimes unpredictable factors that might exist, such as geographical terrain,
atmospheric conditions, temperature, other transmissions, even relative speed between
transmitter and receiver. There are two main types of approaches to model a wireless
transmission channel. A possible approach is to use statistical methods based on
propagation laws. The other one is to apply empirical methods, by taking direct
measurements in different typical wireless environments. However, no matter which
philosophy is adopted, two main channel model categories exist; small scale fading and

large scale fading transmission channel models. Both mode] types are considered next.
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1. Small Scale Fading

Two different kinds of small scale fading exist in wireless propagation. Fading

due to the “time spread”, and fading due to the “doppler shift”.

a) “Time Spread” Fading

In a real world situation transmitted radio signals follow different paths

due to multipath reflection. Different propagation paths result in different delay times for

each path, and therefore a time spread between the first and the last ray can be measured.

This phenomenon may cause intersymbol interference (ISI), as a delayed symbol

overlaps with another one that follows. A channel subject to time spread looks like a

series of pulses in the time domain, as shown in Figure III-1.
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Figure III-1. Time Spread Effect in Small Scale Fading.
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b) “Doppler Shift” Fading

Whenever there is a relative speed between a transmitter and a receiver,

the carrier frequency at the receiver is shifted from that at the transmitter due to the

Doppler effect. This frequency shift is given by:

fd — vrclative fc ,

where v

relative

c

(3.1

1s the relative speed between the transmitter and the receiver,

¢ is the speed of light and f, is the carrier frequency [RAP99, p.165]. As a result, a

broadening of the signal spectrum is observed. For the case of a sine wave, this frequency

dispersion can be characterized by the U-shaped power spectrum given in Equation 3.2

and shown in Figure III-2 [HAA96]. The frequency range where the power spectrum is

nonzero defines the Doppler spread f,.
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Figure III-2. PSD of a Sine Wave with a Doppler Shift.
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2. Free Space Path Loss

Free space path loss concerns the attenuation of the signal strength with the
distance from the transmitting source. In free space propagation the relationship between

the transmitted and the received power is given by:

/1 2
P=P-G -G,-|— |, 3.3
r t t R(4ﬂ'dj ( )

where P, is the received power, P, is the transmitted power, G, is the transmission gain

and G, is the reception gain. Equation 3.3 shows that the strength of the received power

of aradiowave falls off as the inverse square of the distance between the transmitter and

the receiver.

B. TRANSMISSION CHANNEL MODELING

The implementation of a realistic transmission channel is essential for the
performance evaluation of every signal classification method. Such a specification is
essential as the transmission channel can severely affect the transmitted signal either by
increasing the inter-symbol interference or by lowering the effective SNR level. This
study will solely discuss small scale fading situations, that is, time spread fading and

Doppler shift fading.
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1. Additive White Gaussian Noise Channel Model

The most common textbook channel is the additive white Gaussian noise
(AWGN) channel, where the desired signal is degraded by thermal noise associated with
the physical channel itself and/or other hardware used in the link. The AWGN-only
channel is close to reality in some cases, such as space communications and forward path -

cable television (CATV).

2. Raised Cosine Channel Model

Rappaport [RAP, p.146, Eq. 4.12] introduces the impulse response of a multipath
channel when receiver and transmitter are not in relative motion. Ideally this impulse
response consists of a series of delta functions with decaying magnitudes (Figure III-1).
For all practical purposes these delta functions may be replaced with raised cosine
functions that can be easily implemented in the real world. Time-spread between the
multiple ray-paths and attenuation due to multipath propagation will be the two
parameters that this channel takes into account. The analytic expression for the three-ray

channel transfer function is given by:

Eiis $u-d) B -dy)
Mormsine . cos[ T )¢ (1=, cos( T )+ (t=a, cos[ T ) (34)
= Sl T l_4ﬂ2t: +m, - SIne T 1_4ﬁ2(t-d|)2 m, -SIN¢ T ' 1_4‘32([—42)2 )
T* T* T?
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where T is the symbol duration, B is the filter’s roll-off factor, my, is the attenuation of
the 2™ ray, d, is the time difference between the 1* and the 2" ray, m, is the attenuation
of the 3" ray and d, is the time difference between the 1% and the 3™ ray. Figure III-2

plots the impulse response and the spectrum of a 3-ray raised cosine channel model.
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Figure III-3. Impulse response and spectrum for the 3-ray raised cosine channel model,
T =8x107°sec,d, =20x107sec,d, =200x10° sec, B=0.35, m, =~3dB, m, =—6dB.

3. Rayleigh Channel Model

Rayleigh fading distribution is often used in wireless mobile communications to
describe the statistical time varying nature of the received envelope of a flat fading
signal, that is, a signal that has all ray paths attenuated uniformly. This means that there is
no line of sight path between the transmitter and the receiver [LAU94]. This model may

take into account the fact that the transmitter and the receiver might be in a relative
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motion, therefore time spread and Doppler shift may also be considered. The generic
| discrete expression of the received signal in a Rayleigh channel environment is given by:

h =08, Ty, (3.5)
where ¢, is a Rayleigh random variable, s, is the signal sequence and n, is noise. The

envelope of a Rayleigh faded signal is shown in Figure IlI-4 [RAP99, pp. 173, Figure
4.15]. Deep fades occur when multipath components cancel one another. For the case
where there are two principal components, this occurs when the difference in path lengths
is multiple of half a wavelength. This is the éause of selective fading when the signal has

finite bandwidth.
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Figure III-4. Envelope of a Rayleigh faded signal, f, = 900MHz, receiver
speed=120Km/hr [RAP99, Figure 4.15].

The most popular mode! for simulating a Rayleigh fading signal is Clarke’s model

[RAP99, pp. 177-185]. This model assumes a fixed transmitter and a moving omni-
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directional receiver. Clarke showed that the power spectral density S(f) of the electric
field in a Rayleigh fading environment, is generally given by Equation 3.6 [RAP, p.180,

Eq. 4.76]:

s(f)=2p@G@) + p(—a)Gz(—a)] ,
Jay 1= ik

Ja

(3.6)

where f; is the Doppler shift due to receiver’s motion, /; is the carrier frequency, A is the

average received power with respect to an isotropic antenna, G(o) is the azimuthal gain

pattern of the mobile antenna and p(c) is the received power within an angle o.

4. Ricean Channel Model

For Ricean fading there is a strong, constant component to the signal, in addition
to the multiple random components of Rayleigh fading, due to multipath propagation
[RAPI9, pp. 174-176]. Ricean fading is typical in line-of-sight situations, where there is
a direct path between transmitter and receiver, as well as reflecting or scattering
phenomena. The Ricean case is often considered a characteristic of short-term indoor

propagation, while the Rayleigh model fits well with outdoor, short-term propagation.
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IV.INTRODUCTION TO SIGNAL EQUALIZATION

Chapter III presented an overview of the effect of the wireless environment on the
transmitted signal. In real world situations the transmission channel is a critical factor that
may cause unrecoverable distortions on the signal, especially in higher order digital
modulations, such as in 256-QAM, where the effect of a propagation channel may
corrupt the signal constellation even at highTSNR levels. Figure IV-1 shows a 256-QAM
sequence constellation obtained for SNR equal to 40dB at the transmitter. Figure IV-2
presents the constellation obtained by passing this 256-QAM signal through a severe
urban area channel model [Appendix C, channel 11]. To compensate for this distortion,
modern receivers use signal equalization extensively, in an attempt to undo the effects of
the propagation channel. This chapter will discuss two types of signal equalization: the
Constant Modulus Algorithm - Fractionally Spaced Equalizer (CMA-FSE) blind

equalization method and the Alphabet Matched Algorithm (AMA) equalization method.

A. THE CMA-FSE ALGORITHM

The constant modulus algorithm with fractionally spaced equalizer (CMA-FSE)
belongs to a category of equalization methods called blind equalization methods which
are designed to undo the channel effect without any knowledge of the channel itself. The
CMA-FSE is the integration of two different parts: the constant modulus algorithm

(CMA) and the fractional spaced equalizer (FSE).
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Figure IV-1. Ideal 256-QAM constellation; no propagation channel effect.
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1. Constant Modulus Algorithm

The Constant Modulus Algorithm (CMA) is a stochastic gradient algorithm,
designed to force the equalizer weights to keep a constant envelope on the received signal
[HAY96, pp. 365-372, RAP99, pp.304]. Thus, it is designed for problems where the
signal of interest has a constant envelope property. However, extensive simulations have
shown that it still can be used in amplitude-phase modulation types with success, when
the number of states is low, and is routinely applied in today’s applications. As a result,
the CMA is expected to have better performance for M-FSK and M-PSK rather than M-
QAM types. The CMA cost function is given by:

J(n) = E{(Is(n)F B 7/)2}, @.1)

where s(n) is the signal to equalize and y is a positive real constant called the “dispersion

constant” defined by:

V=" (4.2)

where E;,,and E,, are the 4™ and 2™ order moments respectively [CJJ00]. These

moments are described further in Chapter V. The cost function J(n) is minimized

iteratively using a gradient-based algorithm with update equation:
h(n+1) = h(n)— uVJ (), (43)

where A is the tap-weight vector and y is the step-size parameter [HAY96, pp. 794-795].
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2. Fractional Spaced Equalizer (FSE)

In any standard CMA equalization system, the coefficient taps are baud-spaced
that is, the sampling frequency of the equalizer is the baud frequency of the received
signal. However, it is often desired to use an equalizer with taps spaced at a fraction of
the data symbol period T, or sampled at a multiple of the symbol rate. This configuration
gives the extra degrees of freedom to perform additional filtering operations such as
matched filtering and adjustment of sampling phase [HAJ99]. Such a scheme is called
fractional spaced equalization (FSE). In a fractional spaced equalizer, the channel model
is sampled usually at twice the symbol rate and the equalizer output is evaluated only at

T-spaced intervals to obtain the equalized signal.

3. CMA-FSE Scheme

The implementation of a fractional spaced equalizer using the constant modulus
criterion combines the advantages of both concepts into one system. This system is
shown in Figure IV-3. The propagation channel is assumed to be linear and time

invariant. Therefore, the channel € is modeled with a time-invariant finite impulse

response (FIR) filter with coefficients ¢ =|[c,,c,,.. Coui 1. The equalizer is also described

by a N-coefficient vector f =[f,, f...., fyv., Y and the overall system response is

described by the P-coefficient vector h =[h0,h,,...h,,_1]7. The filtering operation

performed by the equalizer can be viewed as the convolution of the sampled received
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sequence with the equalizer coefficients. Therefore, the overall system response is

h=C-f, where C is the PXN channel convolution matrix given by Equation (4.4)

below [JAO98, pp. 1930, Eq. 5].
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C= Co C, KR Co “4.4)
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PxXN
System response A
— — ™
@45 || Channel o {Equalizer i }2 1

Figure IV-3. CMA-FSE Implementation Block Diagram.
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4. Example

The CMA-FSE algorithm is tested on 4-PSK, 16-QAM, 64-QAM and 256-QAM
modulation type signals where the SNR is vset to 40dB for all cases. The purpose of this
test is to find the limits of the highest constellation order that the CMA-FSE algorithm is
able to clear. The MATLAB-based implementation of the CMA-FSE algorithm was
developed by researchers at the Blind Equalization Research group, Cornell University
and the code is reproduced in Appendix D [HATOO]. Figure IV-4 shows the impulse
response of the propagation channel that the CMA-FSE scheme attempts to undo the ect

of. This channel is a 2-path channel and is a typical example of a rural area environment.

) 5% 100 15G 200 250 280

Figure IV-4. Rural area propagation channel impulse response.
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Figure IV-5. 4-PSK constellations; before and after applying the CMA-EFSE algorithm.
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Figure IV-6. 16-QAM constellations; before and after applying the CMA-EFSE algorithm.
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Figure IV-7. 64-QAM constellations; before and after applying the CMA-FSE algorithm.
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Figure IV-8. 256-QAM constellations; before and after applying the CMA-FSE
’ algorithm.
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Simulations show that the CMA-FSE implementation cancels the channel] effect

almost perfectly for low order modulations such as 4-PSK modulation, as illustrated in
Figure IV-5, and up to 16-QAM modulation, as illustrated in Figure IV-6. Performances
degrade for higher constellations. Figure IV-7 shows that the constellation type is still
recognizable for 64-QAM, but Figure IV-8 indicates that CMA-FSE fails for 256-QAM.
This is to be expected as this scheme was designed for constant magnitude modulations

and not for QAM schemes, especially those of higher order.

B. THE ALPHABET MATCHED ALGORITHM (AMA)

.Applying the CMA for blind equalization is an efficient way to cope with QAM
signals with relatively low order constellations. However, a different type of processing is
needed to recover QAM signals with high constellation types. A possible alternative is to
implement a non-blind approach which takes advantage of the specific information
contained in a given signal type, such as constellation centers for example. Such an
approach has been considered recently by [BSC98] and [BAROO] and will be discussed

next.

1. Introduction

The Alphabet Matched Algorithm (AMA) is an equalization scheme that uses a-

priori knowledge of the constellation centers for QAM signals with a specific number of
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states M. This approach was first reported by [BSC98] for M-QAM of low constellation
orders [BAROO]. Barbarossa et. al. modified the original AMA to make it more robust in
high constellation environments [BAR0O]. The AMA implementation consists of a bank
of FIR equalizers where each one is matched to a specific constellation type, as shown in
Figure IV-9. The equalizer that achieves the smallest cost function after convergence

indicates the modulation type [BSC98].

onsteliatton 1
Constellation 2
Cost function 1
S(I1L ]
E( ) . Cost function 2
output
* Choose smallest P
. Cost function N
Constellation N """ — /

Figure IV-9. AMA classifier.

Let us examine a single branch of Figure IV-9 only, as similar findings hold for

the others. Assume the L-tap FIR equalizer weight vector is denoted by:

h(n) =[hy(n),....h,_, ()] 4.5)

Applying the equalizer filter to the input signal sequence s(n) leads to the

equalizer output z(n):
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& 4.6)
z(n)= Y h(n)-s(n-1).

1=0
The basic difference between the CMA and AMA implementations lies in the

definition of the cost function J,(n) associated for the k™ constellation defined as:

u e/ (4.7)
J,m)=EJ1-Y e Vi

?

i=l
where M represents the total number of centroids for the k™ constellation, z(n) is
the output of the equalizer, c,(i)is the i™ centroid of the k™ constellation, and ¢ is a

constant chosen so that:
12
e VY S (4.8)

Basically, Equation (4.8) determines the allowed distance between the centroids
and the equalizer output. The smaller the value of o, the bigger the penalty of the cost
function on the equalizer output. Figure IV-10 shows the AMA cost function obtained for
a 64-QAM constellation modulation type.

As before, the cost function J, is minimized iteratively using a gradient descent

algorithm. The update equation for the filter coefficients is given by:

hn+)=hm)—N [z)], k=1..P, 4.9
where 1 is the step size, and P is the total number of QAM constellation considered. The

gradient derivation is presented in Appendix A, and the final expression is given by:
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where s =[s(n),s(n—1),...s(n— L)Y is a portion of the input signal with length equal to

the length of the filter equalizer.

2. Example

The AMA algorithm was tested on 16-QAM, 64-QAM and 256-QAM modulation
signals with a SNR level of 40dB. Each signal was passed through the same propagation
channel

, as in the earlier CMA-FSE simulations considered in Section A. Next, the CMA-

FSE algorithm was applied to the resulting transmitted signal to provide a good
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initialization to the AMA. Such a two-step process was followed as results have shown
the AMA has good local convergence but needs good initialization [BAROO, p. 177].
Note that the CMA is known to have good global convergence properties when the
symbol set is close to being constant modulus, even when the initialization is poor.
Therefore, cascading both schemes should allow for a more robust modulation type
decision. As a result, the AMA algorithm is initialized when the CMA-FSE converges.
Figures IV-10, IV-11 and IV-12 show the simulation results. The MATLAB

implementation of the AMA algorithm is presented in Appendix D.
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Figure IV-11. 16-QAM constellations; before and after applying the AMA algorithm.
SNR=40dB, step size p=0.01, 6=0.174, 2000 samples, 21 equalizer taps.
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Figure IV-12. 64-QAM constellations; before and after applying the AMA algorithm.
SNR=40dB, step size p=0.01, 6=0.1174, 2000 samples, 21 equalizer taps.
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Results show the AMA gives very good results in the first two cases. Even in 256-
QAM, where the CMA-FSE has no effect, the AMA algorithm recovers a portion of the
constellation. Simulations showed that the key to the AMA algorithm convergence is the
value of ¢ and the step size. Recall that tﬁe parameter ¢ controls the sharpness of the cost
function peaks. Simulations showed that some samples of the signal can potentially be
assigned to the wrong centroid when o is selected too large, due to overlap of the cost
function nulls (Figure IV-1Ci In addition, the AM.A may not converge, when the step

size is chosen too large or to~ =mall.
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V. MOMENTS AND CUMULANTS

Chapter IV discussed two different equalization schemes designed to minimize
channel distortions effects (CMA-FSE and AMA algorithms). This chapter focuses on
identifying features that can be used to identify signals subjected to various types of
distortion. As mentioned earlier in Section 1.C, higher-order statistics have been
extensively used to extract unique signal features. Higher-order statistics is a field of
statistical signal processing which makes use of additional information to that usually
used in ‘traditional’ signal processing measures, such as the power spectrum and
autocorrelation function. Advantages of higher order statistics include the ability to
identify non-Gaussian processes and non-minimum phase systems, and to detect and
characterize signal non-linear properties. Higher-order statistics lead to the definition of
two directly related parameters: statistical rﬁoments and cumulants, which are described

next.

A. MOMENTS
1. Definition

Probability distribution moments are a generalization of the concept of the

expected value, and can be used to define the characteristics of a probability density
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function. Recall that the general expression for the i” moment of a random variable is

given by:
= [ (s= ) f(s)ds, 5.1)

where p is the mean of the random variable. The definition for the i” moment for a finite

length discrete signal is given by:

N

=3 (5= 1) f(s,), (5.2)

k=1
where N is the data length. In this study signals are assumed to be zero mean. Thus Eq.

5.2 becomes:

N .
=8, f(s,). (5.3)
k=]
Next, the auto-moment of the random variable may be defined as:

E v =E[s”(s*)":| , (54)

where p and q represent the number of the non conjugated terms and number of the
conjugated terms, respectively, and p+q is called the moment order. For example, for p=2

and g=0, Equation 5.4 becomes:
N
E,,= EI:SZ(S*)O] = El:s2:| =l = Zssz(sk ), (5.5)
k=1

which is the second moment or the variance of the random variable. In a similar way,

expressions for E_,,,E ,,,E ;,, etc...may be easily derived. Note that the normalized

moments E ., and E,,, are called Skewness and Kurtosis respectively. Skewness is a
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measure of the symmetry of the pdf, whereas Kurtosis is the degree of peakedness

(density of peaks) of the pdf.

2. Explicit Calculation of Major Moments

Selecting second or higher order moments has already proved to be promising to
characterize communication signals, as they may be used to describe the shape of the pdf
of a distribution completely [MAB97]. In a sense, the sequence of moments is analogous
to the components of a Fourier sequence; the first few terms describe the general shape A
and the later terms add up to more detail. Therefore it is useful to derive expressidns that
give some commonly used higher order moments.

Assume a zero mean discrete base-band signal sequence of the form

s, =a, + j-b,. Using the definition of the auto-moments (Equation 5.4), the expressions

for moments of order 2, 4, 6 and 8 may be easily derived. Complete derivations are given

in Appendix B, and the results are summarized below in Table V-1.

1. Definition

Consider a scalar zero mean random variable s with characteristic function:

foy=E{"} (5.6)
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Expanding the logarithm of the characteristic function as a Taylor series, one

obtains:
. k@) k (it)
log f(z) =k (it) + +...+ "y + 5.7)
ORDER 2 E,,, E[a*- "]
Es,, E[a*+b’]
ORDER 4 E; .4 E [a“ +b* - 6a2b2]
E;,, El:a‘1 — b4]
Es,, E|:a4 +b4+2a2b2]
ORDER 6 E, E[a®-b* +152°b* ~15a°D" |
Eg¢s E[a®+b° 54" -5a°p" ]
Esea E[a®-b°—a’b* +a'b’ ]
E,. E[a®+b°+3a’b* +3a°D" ]
ORDER 8 Egqs E[a®+b* -28a°h” +70a"b* - 28a°}° |
Egss E[a®- b’ ~14a°h’ +14a°° |
Eggs E[a®+b° - 42" —10a'b* - 4a’}* |
Egygs E[a* -b* +2a°b" - 247"
Esq, E [as +b% +4a°h* +6a°b* + 4a2b6]

Table V-1. Statistical moments; zero-mean sequence of the forms, =a, + j-b,

The constants k, in Eq. 5.7 are called the cumulants (of the distribution) of s [HY YO0O].

Note that the first three cumulants (for zero-mean variables) are identical to the first three

moments:
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k =E{s}
k, = E{sz} =E,, (5.8
k,=E{s'}=E,,.

il

The symbolism for the n™ order cumulant is similar to that of the n® order

moment. More specifically:

Copegp =Cum| s,....8,5 ,....8 | (5.9)
p  lerms q terms
2. Relation Between Cumulants and Moments

The n™ order cumulant is a function of the moments of orders up to (and

including) n. Moments may be expressed in terms of cumulants as:
E[s1 s] = ECum[{sj },-ev, :I...Cum[{sj}jev, :I, (5.10)
Yv

where the summation index is over all partitions v =(v,,...,v,) for the set of indexes
(1,...,n), and g is the number of elements in a given partition. Cumulants may also be

derived in terms of moments. The n order cumulant of a discrete signal s(n)is given by:

Cum[s,,....s,1= > D" @-DE| [ Ts, |- E[ TTs, | (5.0

v Jjen, Jjev,
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where the summation is being performed an all partitions v = (Vl,...,Vq) for the set of

indices (1,...,n). A simple application example for Eq. 5.11 is presented next.

a) Example

Assume n=]. In such a case, only one partition v, can be defined.
Therefore, g=1, and equation (5.11) leads to:
Cumls,]1=(-1)"'(1-1)! E[s,]= Cum[s,] = E[s,]. (5.12)
Assume n=2. In such a case, the available set of indexes is / and 2, and
two different types of partitioning may be obtained for that set. Thus, v=(v,,v,). The
partitions are:
e (1,2) with g=1,
e (1), (2) with g=2.
Therefore, equation (5.11) becomes:

Cum[s,,s,]1= (1" (1= 1)!E[s,s,]+ (~1)*" 2= DI E(s,)E[s,] =

(5.13)
Cumls,,s,1= E[s,5,]— E(s,)E[s,].

Finally, assume n=3. In such a case, the available set of indexes is (1,2,3),
and four different types of partitioning may be obtained for that set.
Thus,v =(v,,v,,V,,V,) . These partitions are:
o (1,2,3,) leading to q=1,
e (1), (2,3) leading to g=2,
e 2,(1,3) leading to q=2,

e 3,(1,2) leading to q=2,
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e (1), (2), (3) leading to g=3.

Therefore, Equation (5.11) becomes:

Curs,, s,,5,]=(=1)"" (1-1)! E[s,s,5,] +
+(=D)* (2 -1 E[s,]E[s,5,]+
+(=1)"(2—1)! E[s,]E[s,s,]+
+(=1)"7 (2= 1)! E[s;)E[s,s,]+ (5.14)
+(=1)" (3—1)! E[s,]E[s,]E[s,] =

Cumls,,s,,s,]= Els,s,5,1~ E[5,1E[s,5,1— E[s,E[s,5,]— E[5, ] E[5,5,]+
+2E[s,]E[s,)E[s,].

Marchand computed similar cumulant expressions up to the 8™ order

[MARO9S, pp. 173-174], and these are presented in Table V-2 below.
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Table V-2. Relationships between cumulants and moments [MAR98].
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3. Transformations of Moments and Cumulants

The behavior of higher order moments and cumulants to various transformations
is an important factor in determining how useful these quantities may be to characterize

signals in systems.

a) Translation

The only effect of translation on the received signal is only the mean

changes. The variance and all the higher order moments or cumulants remain unaffected.

b) Rotation

The rotation of the received signal’s constellation, due to multipath or
other distortions, affects the relative variances and higher order moments or cumulants,
though certain other parameters such as the eigenvalues and the covariance matrix are

invariant to rotation.
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VL.INTRODUCTION TO NEURAL NETWORKS

Chapter V discussed the use of higher order statistics as features for digital signal
classification. This chapter will give a brief overview of neural networks that will be used
to process some of these features in order to identify the various digital modulation
sequences. Neural networks are iterative, nonlinear schemes that attempt to imitate the
way a human brain works. Rather than using a digital model, in which all computations
manipulate zeros and ones, a neural network works by creating connections between
basic procesSing elements called neurons. The organization and weights of the

connections determine the output of the neural network.

A. BIOLOGICAL NEURON MODEL

The brain is a collection of about 10 billion interconnected neurons, where each
neuron is a cell that uses biochemical reactions to receive, process and transmit
information. Figure VI-1 shows a rough drawing of a biological neuron. A neuron’s
dendritic tree is connected to a thousand neighboring neurons. A positive or negative
charge is received by one of the dendrites when one of those neurons fires. The strengths
of all the received charges are added together through the processes of spatial and
temporal summation. Spatial summation occurs when several weak signals are converted
into a single large one, while temporal summation converts a rapid series of weak pulses

from one source into one large signal. The aggregate input is then passed to the soma
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(cell body). The soma and the enclosed nucleus do not play a significant role in the
processing of incoming and outgoing data. Their primary function is to perform the
continuous maintenance required to keep the neuron functional. The part of the soma that
does concern itself with the signal is the axon hillock. If the aggregate input is greater
than the axon hillock’s threshold value, then the neuron is energized, and an output signal
is transmitted down the axon. The strength of the output is constant, regardless of

whether the input was just above the threshold, or a hundred times as larger.

. -——Synapse

e,

Axon

Nucleus

e . \\ Cell bady

B g

—

Dendrites

Figure VI-1. Schematic drawing of a biological neuron.
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B. ARTIFICIAL NEURON MODEL

Artificial neurons may be represented by very simple models even though

biological neurons are quite complicated, as illustrated in Figure VI-2. The artificial

neuron can have any number of inputs p, which are each multiplied by a weight w,

representing the strength of the contribution to the neuron. Then, all weighted inputs are
summed and biased with a value b. This bias is an additional weight associated to a
constant input taken equal to one. Bias parameters add additional flexibility to a network
by allowing the network hyperplane decision boundary not to be constrained to pass
through the origin. Such a constraint usually results in performance degradations, and for
this reason neural network implementations most often include bias terms.

In addition, each neuron has a transfer function f that transforms the sum of all

weighted inputs to give the final neuron output a. A large variety of linear or nonlinear
transfer functions may be selected, and the specific choice depends upon the exact
application the neuron is built for. A list of the most common transfer functions is shown
in Table VI-1. A neural network usually consist of many interconnected neurons that
form serial processing layers, as shown for example in Figure VI-3 which illustrates a
feed-forward network. Numerous other configurations exist and further details may be

found in [HDB96, Section 19.14].
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o=f(Wp+b)

Figure VI-2. Multi Input Neuron Model].

Figure VI-3. Multilayer Neural Network.
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NAME INPUT/OUTPUT
RELATION
Hard Limit awll x2<0

a=1 nzl

Symmetrical Hard Limit a=—-1 n <0

@ w1 nz0

Linear a=n

a=0 n<0
a=n 0D<n=Zl
a=1 n>1

Saturating Linear

Symmetric Saturating gw-1l n<-l
Linear amn =15n<l

a=1 n>1

Log-Sigmoid 1
& -
lve™

Hyperbolic Tangent o — o

Sigmoid A=
Positive Linear a=0 n<0

amn 0<n

Competitive =1 neuron with max n
=0 all other neurons

Table VI-1. Possible activation functions.

C. NEURAL NETWORK TYPES

Many different types of neural networks can be designed to perform a specific
task. Some of the more popular types include the multilayer perceptron [HDB96, Section
11-2} which is generally trained with the backpropagation algorithm [HDB96, Section
11-7], learning vector quantization [HDB96, Section 14-16], radial basis function
[HDB96, Section 12-2], Hopfield [HDB96, Section 3-12], Kohonen [HDB96, Section 13-
15] and others.... Another approach to classify neural network types is by learning (or

training) type, as some neural networks employ supervised training while others are
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referred to as unsupervised. In supervised implementation the network is trained using
labeled data, i.e., fed with input data with associated known a-priori target outputs.
Unsupervised algorithms do not take advantage of labeled data. They essentially perform
clustering of the data into similar groups based on the input features characteristics.

In this work, it is important to note that the overall classification process is based
not on one general backpropagation network trained on all possible schemes under study,
but on a sequence of several basic networks, using one or two features each, to
differentiate between various subsets. Further details on the overall classification scheme

are presented next in Chapter VIL
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VII. DIGITAL MODULATION CLASSIFICATION SCHEME

Chapter VI reviewed the main concepts behind multi-input neural networks.
Chapter VII discusses the specific overall classification scheme derived to differentiate
between the various digital modulation schemes considered in this work. Note that we
take into account effects due to additive Gaussian noise and multi-path environment. Our
classification scheme combines a hierarchical approach, where one or two specific
features are used to separate between given sets of classes.

The features selected to differentiate between the various digital modulation
schemes considered in our work are a combination of moments and cumulants. We
discussed in Chapter V the concepts of higher-order moments and cumulants, and
reviewed earlier work proposed by Marchand who investigated a cumulant-based
modulation classification [MML97]. Specifically, Marchand calculated theoretical values
for moments and cumulants up to the 8™ order for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-
QAM and 256-QAM schemes [MAR9S8, p. 178, Table B.1]. These values have been
verified and corrected for minor sign errors and are presented in Tables VII-1 through
VII-8. Note that all moments and cumulant values are normalized by the theoretical

signal power P.
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2™ order

moments

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
Esao
P 1 0 0 0 0 0
ES 2.1
P 1 1 1 1 1 1

Table VII-1. Theoretical 2™ order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

4" order

moments

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
E S.4,4
P2 1 1 0 -0.68 -0.619 -0.604
E 5,43
P2 1 0 0 0 0 0
ES 4,2
P2 1 1 1 1.32 1.38 1.395

Table VII-2. Theoretical 4™ order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

6™ order

moments

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

E 5,6,6

P3 1 0 0 0 0 0
E $,6.5

P3 1 1 0 -1.32 -1.298 -1.288
E 5,64

P3 1 0 0 0 0 0
E S,6,3

P3 1 1 1 1.96 222 2.29

Table VII-3. Theoretical 6 order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.
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2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
th
8" order Eqq
p* 1 1 1 22 1.91 1.82
moments Egq,
p* 1 0 0 0 0 0
1
E 5.8,6
4 o - -
P 1 0 2.48 2.75 2.81
E 58,5
4
P 1 0 0 0 0 0
E 58,4
p* 1 1 1 312 3.96 419

Table VII-4. Theoretical 8 order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2™ order

cumulants

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
CS 2,2
P 1 0 0 0 0 0
CS 12,1
P 1 1 1 1 1 1

Table VII-5. Theoretical 2™ order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

4" order

cumulants

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
CS ,4,4
P2 2 -1 0 -0.68 -0.619 -0.604
Csaa
P2 -2 0 0 0 0 0
Csaa
P2 -2 -1 -1 -0.68 -0.619 -0.604

Table VII-6 Theoretical 4™ order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.
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2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
P
order Cses
p3 16 0 0 0 0 0
Cses
cumulants p3 16 -4 0 2.08 1797 1734
CS 6,4
p3 16 0 0 0 0 0
CS 6,3
p3 16 4 4 2.08 1.797 1734
. h
Table VII-7. Theoretical 6 order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.
2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
gh
order | Cgqq
p* 244 34 1 -13.98 115 -10.97
cumulants | Cs,,
pt 244 0 0 0 0 0
CS 8.6
p? 244 0 0 -29.82 27.078 -26.438
CS 8,5
p* 244 0 0 0 0 0
CS 8,4
p* .244 17 17 17.379 24.11 25.704

Table VII-8. Theoretical 8 order cumulant values for 2-PSK, 4-PSK, 8-PSK, ‘6-QAM,
64-QAM and 256-QAM modulations.
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A. FEATURE EXTRACTION

A closer look to Tables VII-1 through VII-8 reveals that some of the moments and

cumulants can be used to separate different modulation schemes while others have little

or no use. For example, the 6" order moment E ,scan theoretically be used to

differentiate the 8-PSK scheme from all others.

Note that at this point it is essential to remember that Tables VII-1 to VII-§
present the theoretical values obtained for moment and cumulants, i.e., obtained
assuming the signal is clean and of infinite length. However, in practice signals are
usually subject to some type of distortion, either inside the transmitter or during
transmission, and are of finite length. In addition, channel distortion is likely to affect the
higher order statistics of the signal, although moments and cumulants are relatively
robust to signal distortion [Chapter V, Section B, Paragraphs 3.a and 3.b]. Moreover, no
infinite dataset is available in practical applications, and finite data length can

significantly affect estimate accuracy.

1. Signal Sequences Creation

Each signal used in this study was generated using MATLAB. We assumed that
carrier frequencies were estimated correctly and the signals heterociyned down. Thus, we
only considered complex baseband signals. The modulation types considered in this work
include 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM, 64-QAM and 256-QAM, previously

considered by Marchand [MARO98], and 2-FSK, 4-FSK and 8-FSK. A total of 100,000
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samples per modulation scheme were created and stored. A typical bit rate of 1Mbps was
chosen for all simulations. The sampling frequency was chosen in such a way that all
schemes are sampled with 4 samples/symbol, a number currently used by manufacturers
of modulation and demodulation devices [COP00]. The digital information (message) is
generated randomly for every trial, to ensure results are independent of the message

transmitted.

2. Moments and Cumulants Estimation

Estimating moment and cumulant values for all modulation schemes considered is
based on the theoretical formulas provided in Tables V-1 and V-2. For this process, only
the moments and cumulants that show some special characteristics as class features are.
selected. The estimation is done on a subset of 20,000 samples per scheme, out of the
total 100,000 samples per scheme dataset. Two different cases are examined. First, the
signals are generated noise-free. Second, the signals are distorted by additive white
Gaussian noise (AWGN) to form a SNR equal to 0 dB. Estimated cumulants and
moments are presented in Table VII-9, where the values shown in parenthesis are those

corresponding to the 0 dB case.
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2.FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16- 64-QAM | 256-QAM
QAM
Es,, 0.5 0.25 0.25 1 0 0 0 0 0
P 0.24) 0.12) ©.12) 0.5 () 10 ) ) I0)
Essa 1 0.5 0.25 1 1 0 0,68 -0.61 0.6
2
P (0.23) (0.12) (0.06) (0.25) (0.25) I0) (-0.16) (-0.16) (-0.51)
Es.is 0.5 0.25 0.25 | 0 0 0 0.0 0.002
2
P (©.5) (0.25) (0.25) m ) () ) [0 (0.0004)
Es.4 2 1 1 1 | 1 1 1.32 1.38 1.34
2
P (1.75) (1.75) (1.75) (1.75) (1.75) (1.75) (1.82) (1.85) (1.85)
Es.a.s 1 0.5 0.25 ] 1 0 132 -1.29 -1.28
3
P ©.75) (0.35) ©.18) ©.75) (0.72) () -0.6) (-0.6) (-0.54)
Es.x.x 1 1 0.5 i 1 1 22 191 1.82
p*
0.25) (0.5) (0.18) ©.13) (0.18) ©.07) ©.08) .11 )
Egyq 1 0.5 0.25 1 1 0 248 275 -2.81
4
P (257 (L18) ©.7) (2.64) (2.61) .1 (237 (-2.9) (-2.25)
ES.M 1 1 1 1 i 1 3.12 3.96 4.19
4
P (12.82) (1291 (13.13) (13.02) (13) (13) (15.5) (159) (16.18)
Cs.4,4 0.1 0.5 0.5 2 -1 0 -0.68 -0.619 -0.604
2
P ) (-0.11) (-0.13) (-0.5) (-0.25) (-0.25) <0.17) (-0.15) -0.15)
Cs.ﬁ.s 1 08 0.25 16 4 0 2.08 1.797 1734
3
P ) () ) V) (-0.5) D) ©.25) ©.23) (0.22)
Cs.x.x 316 245 2.45 244 34 1 -13.98 115 -10.97
4
P (2.22) (0.52) (.1) (-15.5) (-1.84) o) D) -0.86) -0.8)
Cs.x‘a -64.5 28 287 244 -8 17 17.37 24.11 247
4
P (66) (65.82) (66.6) (13.02) (65.5) (65.73) (15.5) (76.02) (76.18)

Table VII-9. Estimated values for selected moments and cumulants up to the 8™ order for
2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM
modulation schemes; total samples per scheme=20,000. SNR=c, SNR =0 dB shown in

parentheses, P= noisy signal power.
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Table VII-9 shows that there are small differences between the theoretical and the
estimated values of moments and cumulants for the noise-free case, but in general the
values are quite close. However, this is no longer true for the 0 dB case. Such changes are
mainly due to the noise impact in the estimated noisy signal power, and to a ~maller
extent to the noise effects in the moment and cumulant estimation process. For e ample,

note that C ;. exhibits a large deviation from its noise-free value, making the selection

of the most appropriate feature even more difficult.

3. Feature Selection

Based on the results of Table VII-9, an initial selection of the features + ith the
most interesting characteristics is made. These features are presented in Table VII-10

below.

CS.S.B ES.?..Z ES,4.3 ES,6.5 CS.G.S }

Pt P P? 3 p?

Separates 2-PSK | Separates M-QAM | Separates M-QAM | Separates 4-FSK | Separates 4-PS} -
from all other 4.PSK and 8-PSK | 4-PSK and 8-PSK from 8-FSK and 8-PSK, from
schemes from M-FSK from M-FSK M-QAM
[~ Separates 2-FS¥ |
from 4-FSK and

8-FSK

Table VII-10. Selection of the most discriminating features for the proposed scheme
classification.
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Further testing of the robustness of those features is essential to determine their

usefulness in a classification scheme and should include SNR level variations and

distortions due to fading and multipath.

a) Robustness to White Noise

We first investigated the robustness of features to additive white Gaussian
noise, i.e., the AWGN propagation model case as described earlier in Chapter 111, section
B, paragraph (a). We considered all modulation types in SNR levels between 0 and 20dB
with 100 trials per SNR level, and various data length for cumulant and moment
estimation. Complete results are présented in Appendix E. Figures VII-1 through VII-5
present the behavior for all selected features as a function of the SNR level for a 15,000

sample dataset.
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Figure VII-1. Cg,/ P*® for all modulation schemes; 15,000 samples dataset, 100 trials

per SNR level.
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Figure VII-5. E;, / P*for all modulation schemes: 15.000 samples dataset, 100 trials per
SNR level.

Figures VII-1 through VII-5 show that the selected features may be used to

separate all schemes, except M-QAM, down to almost 5dB. However the AWGN
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channel is a simplified case that does not take into account fading and multipath

propagation phenomena.

b) Robustness to Fading and Multi-path Environments

Robustness of the selected features was investigated next by studying their
behavior when the modulation signal 1s passed through the various fading and multipath
propagation models covered in Chapter III, Sect. B.1-4. The specific impulse responses
for each propagation channel used in this study are presented in Appendix C (Channels 1
to 9). These channels cover a variety of different environments, from rural environment
models with 1 or 2 paths to urban models with more than 3 different propagation paths.
SNR levels between O to 20dB were again considered here, and 100 trials implemented
per SNR. Complete results are presented in Appendix E. Figures VII-6 through VII-10
presen£ the behavior for all selected features as a function of the SNR level for a 15,000

sample dataset.
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Figure VII-6. C,,/P* for all modulation schemes; 15,000 samples dataset, 100 trials
per SNR level.
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Figures VII-6 through VII-10 reveal the impact of the modeled wireless
propagation channel on the higher-order statistics of the modulation types. Some

propagation channels (Channels 3 and 7) distort the selected features to such an extent
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that any attempt to built a classification scheme based on fixed class feature thresholds is

doomed to fail.

B. PROPOSED SCHEME

Figures VII-1 through VII-10 show that the proposed classification scheme has to
be flexible to SNR level and propagation channel distortions. With the exception of the
M-QAM modulations, higher-order statistics may have the power to separate different
modulations provided one introduces some type of “agile” classification scheme. At this
point, neural networks seemed a logical approach to the problem because they offer
flexibility and performance proportional to the quality of the training data set available.
In addition, neural networks can be a very fast, near real-timg, solution to the problem,
once they are trained. However, note that the classification of M-QAM type is still a
problem since no suitable higher-order statistics can be found to serve as classification
features, for the varying environments considered. In this case, a combination of
equalization techniques, previously considered by Barbarossa et. al. [BAROO], will be
applied to identify the specific M-QAM type. The proposed method cascades the FSE-
CMA equalization and the AMA method, previously described in Chapter IV. The

complete classification scheme is shown in Figure VII-11.
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Block #0

{ Unknown signal s(n)

2-PSK

C.S“ 33

4-PSK

Block #4

8-PSK
C.S' 6.5

Block#2

CS,ﬁ,S

2-FSK

Block #3

ES,G,S

4-FSK 8-FSK

Figure VII-11. Theoretical classification scheme for 2-FSK, 4-FSK, 8-FSK, 2-PSK,

4-PSK, 8-PSK, 16-QAM, 64-QAM & 256-QAM modulation types.

The overall classification scheme consists of five high-order statistics-based
classification blocks that are described next, and one equalization-based block. The first

five blocks contain basic back-propagation neural network classifiers trained to identify
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all constant modulus signal types: 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, and
generic M-QAM types. The specific identification of the QAM type (16-QAM, 64-QAM,
256-QAM) is accomplished via a combination of FSE-CMA and AMA equalization
methods. Note that the use of the FSE-CMA is essential for the proper initialization of the

AMA algorithm [BSC98].

1. Neural Network Blocks Implementation

Conceptually, the proposed classification scheme includes two different
approaches. The neural network classifiers and the blind equalization classifier.

Blocks number O to 4 in Figure VII-11 are single, two, three or four layer neural
networks. Each network is trained with a specific feature training sequence, with the
exception of the second block that is trained with two features simultaneously. The
number of layers, the activation functions and the number of epochs vary from block to
block. The choice for the specific characteristics of each network was done empirically
by trial and error and based on the clarity of the specific feature. Note that more layers
and more epochs were selected for features more severely distorted from noise or
propégation channel effects than others. Table VII-11 presents the characteristics for each

neural network.
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BLOCKS
#0 #1 #2 #3 #4
Inputs 1 2 1 1 1
Class:fving CS,8,8 ES,4,3 ES.2,2 CS,G‘S ES,6,5 . CS,6,5
p PP P P’ p P
Feature(s)
Layers 2 3 3 4 3
Arrangement of
neurons per 8-1 20-8-1 20-10-1 14-4-2-1 20-10-1
layer
Activation tansig’ '‘tansig’ 'tansig’ 'tansig’ 'tansig’
function per 'satlins’ 'tansig' 'tansig’ 'tansig’ 'tansig’
layer 'purelin ‘satlins' 'tansig’ 'satlins'
'purelin’
Regquired epochs 40 40 70 100 40

Table VII-11. Neural network characteristics for blocks #0 through #4.

Training data was generated according to the schematic shown in Figure VII-12.
First, a 15,000 sample sequence was extracted out of the 100,000 samples generated for
each modulation type, as described in Chapter VII, Sect. A.1. Next, each sequence was
passed through one out of nine different propagation channels further described in

Appendix C (channels 1 to 9). These channels were selected to represent a wide variety
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of propagation situations. They include from single to more than 4-path models that
correspond to rural, small town or urban propagation conditions. Next, the resulting
signal sequences were corrupted with additive white Gaussian noise with SNR levels
between 0 to 20dB. Finally, 100 trials per SNR level were generated. Note that we used
multiple trials per SNR level to get a sense of the variance in the measurements and
enhance the network’s performance.

Next, the selected features defined above were estimated for each noisy signal. As
a result, each dataset was associated with six different feature parameters and each
feature (or combination of) fed into the appropriate network for training. Figure VII-12

shows the training dataset creation process.

2-FSK | | 4-FSK 256-QAM

F"_I—_i

#1 } 9 prapagation channels
ﬁLi b s
LlE]. oo -} 100 trinls
SN e e o
_-\\/__
Sequentially stored data

Figure VII-12. Training schematic for the neural network based classification blocks of
the overall classification scheme.
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2. FSE-CMA & AMA Classifier Block Set Implementation

The purpose of the last block (Block #5) is to differentiate within the QAM
family, where 16-QAM, 64-QAM and 256-QAM signal types are considered here. These
modulation types are those most susceptible to noise and fading due to the proximity of
the associated constellation’s centroids, especially for higher order constellations. Recall
that Table VII-11 showed how similar the higher-order parameters are for QAM

schemes, thereby making them of little use in classification applications.

Block #5 consists of two parts. The incoming M-QAM signal is first equalized
using the FSE-CMA algorithm, as described in Chapter IV, Sect. A. This method is
proved to be efficient when the equalized constellation is unknown. A 20-tap equalizer is
chosen and the step size selected to be equal to 0.5 to insure the algorithm is stable.

The second process in Block #5 is the AMA algorithm described in Chapter IV,
Sect. B. Following the model of Figure IV-9, three different equalizers banks are created,
each one matched to one of the three QAM constellations. The parallel model is adopted
as it speeds up the decision process, although a model with three AMA equalizers in
series would also work. The processed signal obtained after the FSE-CMA step is
processed so that all the signal’s values lie between —1 and 1 and then passed through the
three AMA equalizer banks. Each AMA equalizer is matched to a specific QAM type:
16-QAM, 64-QAM, or 256-QAM. The cost function J(n) given in Equation 4.7 is
evaluated after converge for each AMA equalizer. Recall that the theoretical cost
function will be smallest when assigned to the correct constellation type, as described in

Chapter IV, Sect. B1. As a result, the constellation type decision is made by picking the
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modulation type associated with the smallest estimated cost function out of the three

modulation types computed.

C. TESTING PROCESS

1. Non Linear Case

The proposed classification scheme is ready for testing once all neural networks
are trained. The MATLAB-based software allows the user to run a single test simulation,
by manually selecting the signal type, SNR level and propagation channel type. It also
allows to automate the entire process by considering all modulation types, seven SNR
levels ranging between 2dB and 20dB, 50 independent trials for each case and 3 out of
the 6 available testing propagation channels. A complete copy of the software may be
found in [HATOO] or is available by contacting the authors. For every trial, a new random
message and noise is created to ensure the independence of all results. The three
propagation channels that are chosen for testing are channels 10, 12 and 14 (Figures C-
10, C-12 and C-14). These channels represent rural, small town, and urban propagation
environments respectively.

The automated process creates seven confusion matrices per propagation channel
(one per SNR level), which are presented in Appendix F. These simulations cover a wide
spectrum of possible noise and propagation environment combinations. The main
quantities of interest were the overall classifier performance and the performance of the

neural-network (NN)-only portion of the classification set-up, which only considers the
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generic QAM family but does not subdivide into the three QAM schemes considered
here. Figures VII-13 to VII-15 show these two quantities for the classification set-up
obtained for a rural area propagation model (which is presented in Figure C-10), a small
town propagation model (which is presented in Figure C-12) and an urban propagation
model (which is presented in Figure C-15). Results show the NN-only portion of the
classifier to perform very well down to 11dB for all cases. At the same time, the
degradation in classification also shows that Block #5 (designed to separate between the
various M-QAM schemes) has a consistently lower performance than the rest of the
classifier. This degradation reveals the difficulties of M-QAM separation, especially at
low SNR levels. This degradation is also illustrated in Figure VII-16, which presents the
classification performances for specific M-QAM types. Such degradation is due to the
fact that the equalization algorithms cannot completely undo non-linear channel effects
and mitigate the noise effects.

Results also show that classification performances degrade as the complexity of
the environment increases for a given SNR level. However, the classifier stills performs
relatively well in the most complicated environment, i.e., the urban channel model
(Figure C-15). This was to be expected as the training of all neural network blocks
included urban propagation channels (Figures C-3, C-4 and C-7).

Figure VII-17 illustrates the classification performance for Block #4 (based on
cumulant Ces) in correctly identifying a given modulation as being of M-QAM or non-
M-QAM type for all three testing channels. Results show that Block #4 performs well,
and further confirms that the degradation in classification performances actually occurs at

Block #5 containing the equalization steps. As a result, next we considered a linear
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channel case to investigate the sensitivity of the equalization steps to a “better behaved”

transmission scenario.
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Figure VII-13. Classification performances for channel 10 (Figure C-10); 50 trials per

signal per SNR level.

110 ; -

100 |-

90 |
. 80}
N
[
2 0l
<
z
& 6of
£
=
a SO

40 |

,*' —— TOTAL CLASSFIER PERFORMANCE
30l ,’, -w-. NEURAL NETWORKS PERFORMANCE _
20 . . . , . . . .
2 4 & 4 10 12 14 16 18 20
S NR [dB]

Figure VII-14. Classification performances for channel 12 (Figure C-12); 50 trials per
signal per SNR level.
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Figure VII-15. Classification performances for channel 15 (Figure C-15); 50 trials per
signal per SNR level.
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Figure VII-16. M-QAM-specific classification performance for channel 10, 12 &15; 50
trials per signal per SNR level.
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MQAM/non-MQAM differentiation
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Figure VII-17. M-QAM/non M-QAM differentiation performance for channel 10,12 &
15; 50 trials per SNR level.

2. Linear Case

To investigate the robustness of Block #5 to channel distortions, we consider a
simple linear channel with impulse response h=[0.9,0.1,0.4] to train the previous network
in SNR levels between 2 and 20dB. Next, the network is tested for data transmitted
through another linear channel with impulse response ¢=[1,0,0.5]. As before, 100 trials
per SNR level are selected for training, while 50 trials are generated for testing, resulting
in seven confusion matrixes (one for each SNR level). Average Cclassification

performances are shown in Figure VII-18 and the confusion matrixes included in

Appendix F.
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Figure VII-18. Classification performances for network trained on linear channel
¢=[1,0,0.5]; 50 trials per signal per SNR level.

Figure VII-18 illustrates the fact that the equalization-based classification portion
performs better in medium to high SNR levels when channel distortions are linear, as

expected.
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VIII. CONCLUSIONS

Classifying modulation types has been studied extensively over the last decade as
applications arise in numerous different areas. However, few published works deal with
real-world propagation models. This study considered the classification of various M-
PSK, M-FSK, and M~-QAM modulation types under unfavorable propagation conditions
and additive white Gaussian noise distortions. We first reviewed the literature in the
general area of modulation classification. Initial work indicated that hi gher—order' statistic
parameters could be selected to differentiate between all digital modulation types
considered in this stuady when dealing with ideal transmission conditions. However,
initial work also showed that these class features were no longer useful in differentiating
between specific QAM types, when signals were distorted by multipath environments.

As a result, a hierarchical classification scheme based on neural network decision
nodes was adopted to separate all modulation types, except specific M-QAM types.
Classification of various M-QAM types was obtained by a combination of two
equalization schemes: the CMA-FSE and the AMA algorithms. While the CMA-FSE is a
blind equalization scheme, the AMA takes advantage of the specific M-QAM
constellation structure of the QAM types considered. Such a two-step process was
motivated by the high sensitivity of QAM modulation types to éhannel distortions, and
the inability of higher-order statistics to separate within the M-QAM family for medium

and low SNR levels.
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We investigated classification performances for the overall classification scheme
in various types of propagation channels (rural, small town and urban) and SNR levels.
Results show the classifier performs well for all modulation types considered, but breaks
down fast as the SNR level goes down for M-QAM modulation types. This degradation is
due to the unability of the current equalization set-up to handle both multipath and SNR
degradations. However, such a result was éxpected as M-QAM modulation types,
especially those of high order, are extremely sensitive to noise and multipath fading
situations. At this point, further refinements in the equalization schemes would be
required to improve the M-QAM classification portion of the hierarchical scheme.

Note that classification performances are directly related to how well the network
gets trained, and that better training may be obtained by including a wider range of
propagation models and SNR ranges. In addition, note that that the overall classification
process considered in this work does not take into account any a-priori knowledge of the
propagation environment. However, some type of propagation channel information, such
as the general type of channel (i.e., rural or urban areas), may be available in some
situations. Incorporating a-priori information will lead to a “better” training of the neural
network with data selected for the specific environment of interest, resulting in improved
performances.

Finally, this study did not take into account pulse shaping which is commonly
used prior to transmission in practical situations. Adding pulse shaping and investigating
the resulting effects on overall classification performances is needed to assess the overall
capability of the proposed hierarchical scheme. However, the current project timeframe

did not allow for such extensions to be considered, and those are left for further study.
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APPENDIX A. AMA COST FUNCTION GRADIENT DERIVATION

Recall from Chapter IV that the output to the AMA equalizer is given by :

z(n) = 2 hz (n)-s(n-1), (A1)

=

where h is the L-tap FIR equalizer weight vector at sample n, given by:

h=[hys-.- 1], (A2)
and s is a portion of the input signal with length equal to the length of the filter

equalizer:
s =[s(n),s(n-1),...s(n—L)]. (A.3)
Therefore, Equation (A.1) for the n™ sample may be re-written in vector form as

follows:

z=h"-s. (A.4)

Recall the AMA cost function for the n®™ sample is given by (Chapter IV, equation

4.7

2

J, =E<{1- i e—IZ_Ck(i)%Z (A.5)

i=1
where M represents the total number of centroids for the k™ constellation, c, (i)is
the i® centroid of the k™ constellation, and ¢ is a constant chosen so that:

e-{c(z)—c(i)lz/zol -0, Vi#i A6)

97




The gradient of the cost function given in Eq. A.5 is:

M e O [T deeiif
aE{l-—Ze K"z} a[e 4"2}
il dz 0(1) dz ¥« 0z
V] = EZ e v L ]2
‘ % % 2 % A
v, =0-3 jﬁ"""c"(")lzzoz AW s—¢, () oh's (A7)
k e 20? oh ‘
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APPENDIX B. DERIVATION OF MOMENT EXPRESSIONS FOR UP TO 8™
ORDER

Recall that the auto-moment for a sequence s, was defined earlier in Chapter V

E, .., =E[s"(s")], ®.1)
where p and g respectively represent the number of the non conjugated and conjugated

‘terms, respectively, and p+q is the moment order.

Consider a zero-mean sequence of the form s, =g, + j-b,. For M-QAM signal
types, a,and b, are independent, and as a result, fhe auto-moments are purely real
[MAR98, p.169, equation B.13]. For M-FSK and M-PSK types this result does not hold,
as real and imaginary sequences a, and b, are not independent. However, Marchand

showed that for constant modulus signals such as M-FSK and M-PSK types, all moments
are either zero (for odd order moments) or non-zero real quantities [MAR9S, p.175, Eq.
B.51-B.53]. Therefore, expressions for the auto-moments of modulations M-QAM, M-

FSK and M-PSK can be derived easily, by applying equation (B.1) to s, for various orders

p and q and keeping the real part only. Results are shown next.

B.1 SECOND ORDER MOMENTS

o E,,=E[s’(s)1=El(a+ jb)’]=
Es,,=El(a*~b")]
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Es,, = E[s'(s")' 1= El(a+ jb)(a- jb)] =
Es,, = E[(a’+b?)]

B.2 FOURTH ORDER MOMENTS

* E;,,=Hs'(s")1=H(a+ jb)'1=El(a+ jb)(a+ jb)]=
E,,=Ela' +4a’bj+4ab’j+6a’b’j* + jb*1= Ela* +b* —6a°b’]

Eg,,=E[s’s 1= E[(a+ jb)*(a- jb)] =
Eg ., =E[(a’+3a’hj+3ab’ j+b*j*)(a- jb)] =
E;,;=E[a*+2a’bj-3ab’j—ab’ j-b*]1= E[a* - b*]

* E,,,=E[s’(s)1=El(a+ jb)*(a- jb)’]=
E;,,=E[(a®-b”+2abj)(a®+b* - 2abj)] =
Eg,,=E[a*+b*-2a’h"j*]= E[a* +b* +2a°Db*]

B.3 SIXTH ORDER MOMENTS

*  Eyo=Els*(s" 1=Bl(a+ jb)°]1=El(a+ jb) (a+ jb)'1=>
Eg¢s =EI(@ +3a°bj +3ab’ j* +b' /"Y' +3a’bj +3ab’ j* +5' )] =
Ey s =EI(@ +3a°b ~3ab* ~ b )(@ +3a°bj ~3ab b )] =
E = Fld* +6a°bj —6a°b? —204°b’ j+9a'b* j* —64°b* * +9a°b* +6ab’ j +1° ] =
Esss= EJa® —b° +15a%" —15a°p]

Esgs =Els’s'1=El(a+ jb)Y’(a— jb)] =

Ess=E[(a’ +5a°bj+10a°0° j* +10a°b’j* +5ab’ j* + b’ j° Ya—bj)] =
Eg s =E[a® +4a’hj+5a'b’j* —5a°b" j* —4ab’j° - b° j* 1=

Eg s =Ela®-5a'b’ —5a°b* +b°]
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E ¢, =E[s*(s")’]1= E[(a+ jb)*(a— jb)’] =

Es¢,=Ela* +4a’bj+6a’h’j* +4ab’ j* +b* j*)(a* - 2abj ~ b*)] =
Es,=E[a’+2a’bj—a'b’j* ~4a’b’ j' - a’b* j* +2ab’ j° +1° j° 1=
E ,=E[a’+a'b’ -a’p* -b°]

Es,=E[s’(s")’ 1= E[(a+ jb)’(a— jb)’] =

E;¢,=E[d’ +3a’bj+3ab’j* + b’ j° )@’ —3a’bj +3ab’ j* b’ )] =
Es¢,=E[a’-3a"b’j* +3a*j* - 1° 1=

Es¢,=El[a®+3a"b* +3a’h* +b°]

B.4 EIGHTH ORDER MOMENTS

Eso3 =Els '&1=El(a+ jb)1=

Egoo =E[a* +8a'bj+284°0*  +56a°b’ j* +70a°b* j* +56a°F° j° +28a°b° j* +8ab’ j +5° j*1=>
Egg5 =Ela" —28a°b" +70a'b" ~284°b" +1"]

Es,=Els's’ 1= El(a+ jb) (a- jb)]=

Egy,=Eld' +7a°bj+21a°h’ j* +35a°F° j> +35a°b* j* +21a°0° j° +7ab’ j° +b" j" Y a— jb)}=
Eq,,=Ela® +6abj +14a°* j* +14a°D j* —14a°Y’ ° - 14a°b° j* —6ab’ j* —b*j* 1=
Eg.,=Ela* -14a°V* +14a’b° -1*]

Egz=E[s*(s"1=E[(a+ jb)’(a- jb)’] =

Egz =El(a° +6a°bj +15a°D* j* +20a°b* j* +15a°b" j* +6ab’ ° +b° j*Wa® —2abj + b* )] =
Egys=Eld" +4a'bj+ 405 ~ 400 f = 100D ' =400’ [ +40°8° +4ab [ 41 111>
Egso=Eld" —4a°* -10a'b* - 4a’b° +1°]

Egys=E[s°(s")’ 1= El(a+ jb) (a— jb)’}=

Eg,s=E[(@’ +5a°bj+10a°0’ j* +10a°6°;* +5ab* j* +1° (@’ —3a’bj + 3ab* * - b )] =
Egys=E[d" +2a'bj- 240 * —6a0' | +6a°F j° +2a°F° j* - 2ab j* - b* j* )] =
Eg,s=Eld" +2a°0* -24°b" - b']
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Esy.=ELs*(s) 1= El(a+ jb)*(a- jb)']1=

Ego.=El(a* +4a’bj+6a’b’ j* + 4ab’ j* + b* j*)(a* — 4a’bj + 6a°b* j* - 4ab’ j* + b* j*)} =
Egys=Ela’ —4a°b*j* +6a*b*j* ~ 4a°b° j° + 1" j* 1=

E..=Ela* +4a°b* +6a*b* +4a°b" + b*)
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APPENDIX C. PROPAGATION CHANNELS IMPULSE RESPONSES

One of the goals of the study was to simulate situations as close to reality as
possible. For this reason, data taken from real world measurements were used, as opposed
to artificial channel models [SPIBOO]. These impulse responses represent various
wireless propagation channels, from mild fading to severe multipath fading situations.
Figures C-1 to C-9 show the impulse responses of the channels used for the neural
network training described in Chapter VII. Figures C-10 to C-15 show the impulse
responses of the channels that are used during the testing phase of the overall
classification scheme. All plots present the magnitude of the complex impulse responses
in dB. One thing that worth noting is the similarity of some of these real world channels
with the theoretical Rayleigh fading envelope presented in Figure III-4. However, note
that there are cases where the real channels are much worse than those described by the

Rayleigh fading model (Figures C-14 and C-15).
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Figure C-1. Propagation channel #1.
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Figure C-2. Propagation channel #2.
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Figure C-3. Propagation channel #3.

MAGNITUDE (dB)

-100 F

-120

20t

'
H
[=3

=
=
—_——
=
T

Il
00
o

¢ 50 100 150 200 250 300
SAMPLES

Figure C-4. Propagation channel #4.

105




MAGNITUDE (dB)

.10k
20

=30 L

-40 }-

f\
;\/ / \fw .
[\{ EWWW u\{%«x‘am;\ \M

-80 |

10 T T L ™

-90 _

0 50 100 150 200
S AMPLES

250

Figure C-5. Propagation channel #5.
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Figure C-6. Propagation channel #6.
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Figure C-10. Propagation channel #10.
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Figure C-12. Propagation channel #12.
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Figure C-13. Propagation channel #13.
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Figure C-14. Propagation channel #14.
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APPENDIX D. MATLAB CODE

function [ynew.flagout]=fsecma(r,stp);

eexxxx s % o K e e Rk Ak ke Tk kT L h Rk ek ko ke k * Jodk ek Rk ek hkkk kTR *x%*
% Function

% - Implements the FSE-CMA blind equalization algorithm
o/

70

% Use: [ynew,flagout]=fsecma(r,stp)

%

% Input:  r-> The signal that is to be equalized

% stp-> The desired algorithm step

%

% Returns; ynew-> The equalized signal

% flagout-> A diagnostic flag variable

o

7o

% Function fsecrna.m created by the MPRG group [MPRO0O]
% Modified on 21 January 2001 by G. Hatzichrisios
96********************************1*rr*************r**x*t*********
% Run CMA on T/2-spaced modem data
% with a T/2-spaced equalizer (FSE)
flagout=1;
r=r;
% Get number of T-spaced symbols
L=(length(r)/2); '
% Normalize to unit power
r=r-mean(r);
r=r/((1/length(r))*norm(r,2)2);
% Define FSE
Nf=16; % This is the number of coefficients in use
f=zeros(Nf,L);
% Center spike init
f(Nf/2,Nf/2-1)=1;
% Define step-size & dispersion constant
% any number for g will work to open eye
% or rings
mu=stp;
gam1=abs(r).;gam2=abs(r).*2;g=gam1/qam2;
% Define error and equalizer output
e=zeros(1,L);
y=zeros(1,L);
% Run CMA
for k=Nf:2:2*L,
=k/2;
R=r(k:-1:k-Nf+1).’;
y()=R."(:,j-1);
if norm(y(j))>10000
flagout=-1
return
end
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f(e.i)=1(:,j-1)+muconj(R)*y(j)*(g-abs(y(j))*2);
end

% Run new data to get eye diagram

% make sure to get odd samples
ynew=filter(f(:,j),1,r);
ynew=ynew(2:2:length(ynew));
ynew=ynew(100:length(ynew)-100);
ynew=ynew’;

flagout=1;

return

% END OFFUNCTION

o g g O S ) s aevsservssses

°j: Function

Yo - Implements the Alphabet Matched Algorithm classifier

o

://;Use: [flag_storage]=ama_function(x_signal)

:;: Input:  signal-> The unknown M-QAM sequence

://Z Returns: flag_storage-> A flag variable indicating the identified modulation
°Z 21 January 2001, G. Hatzichristos

%****3\'*****'k*******t*********'k*'k***'k*****************'I*****************

flagout=0;
xmax_16qam=0;xmax_64gam=0;xmax_256qam=0;
ymax_16gam=0;ymax_64qam=0;ymax_256qam=0;
centroid_matrix_16qgams=[];centroid_matrix_64gam=[];
centroid_matrix_256qam=[];
xvector_16gam=[J;xvector_64gam=[];xvector_256gam=[J;
yvector_16gam=[];yvector_64gam=[};yvector_256qam=[J;
% Do the FSE-CMA
[x_signali flagoutl=fsecma(x_signal,0.5);flagout
[x_signal2,flagout]=fsecma(x_signal,5);flagout
if flagout==-1

disp('we have 18gam’)

x_signal2=x_signal1;

end
[x_signal3,flagoutl=fsecma(x_signal,15);{lagout
if flagout==-1

disp('we have 18gam’)

x_signal3=x_signal2;
end
% Do the preprocessing
% Here the signal is processed so that its limits are from -1 1o 1
{pn,minp,maxp,tn,mint,maxt] =premnmx(real(x_signal1),imag(x_signal1));
x_signal1=pn+i*tn;
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[pn,minp,maxp,tn,mint,maxt] =premnmx(real(x_signal2),imag(x_signal2));
x_signal2=pn+i*tn;
[pn,minp,maxp,tn,mint,maxt] =premnmx(real(x_signal3),imag(x_signal3));
x_signal3=pn+i*tn;
[snr_est1,gam_energy_estimate}=snr_estim(x_signal1);
[snr_est2,qam_energy_estimate]=snr_estim(x_signalz);
[snr_est3,qam_energy_estimate]=snr_estim(x_signal3);
snr_est=mean([snr_est1 snr_est2 snr_est3]);
%*********************&*******************************************‘k****
% The position of the noisy signal’s centroids is affected from the signal to noise ratio
% Therefore an estimate of the SNR helps to fine-tune the theoretical centroids as close
% to the real centroids as possible.
O/'O**************iirirwx % yode ok * o e g e Yk ek ke ke kR Rk * FRKRF IR hRK *xhkhk
if snr_est<=8

xmax_16gam=0.5;

xmax_64gam=0.4;

xmax_256qam=0.6;
elseif snr_est>8 & snr_est<=11

xmax_16gam=0.58;

xmax_64qam=0.48,;

xmax_256qam=0.7;
elseif snr_est>11 & snr_est<=14

xmax_16gam=0.6;

xmax_64gam=0.6;

xmax_256qam=0.7;

elseif snr_est>14 & snr_est<=18

xmax_16gam=0.8;

xmax_64gam=0.7;

xmax_256qam=0.7;
elseif snr_est>18

xmax_16gam=0.8;

xmax_64gam=0.7;

xmax_256qam=0.7,
end
ymax_16qam=xmax_16gqam;
ymax_64gam=xmax_64qam;
ymax_256qam=xmax_256gam;
% Create the theoretical centroids of all three M-QAM modulations
xvector_16gam=-xmax_16gqam:2*xmax_16qam/3:xmax_16qgam;
yvector_16gam=-ymax_16gam:2*ymax_16gam/3:ymax_16qam;
xvector_64qam=-xmax_64gam:2*xmax_g4qam/7:xmax_64qam;
yvector_64qam=-ymax_64qam:2*ymax,~64qam/7 :ymax_64qam;
xvector_256qam=-xmax_256qam:2*xmax_256qam/1 B:xmax_256gam,;
yvector_256gam=-xmax_256qam :2*ymax_256gam/15:ymax_256gam,
for loop1=1:4

for loop2=1:4

centroid_matrix_16gam=[centroid_matrix_16gam;xvector_16qam(loop1)

yvector_16gam(loop2)];

end
end
for loop1=1:8

for loop2=1:8
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centroid_matrix_64gam=[centroid_matrix_84qam;xvector_64gam(loop1)

yvector_64gam(loop2)];

end
end
for loop1=1:16

for loop2=1:16
centroid_matrix_256gam=[centroid_matrix_256gam;xvector_256gam(ioop1)
yvector_256gam(loop2)];

end
end
centroid_vector_16gam=centroid_matrix_16qam(:,1)+i.“centroid_matrix_16qam(:,2);
centroid_vector_64gam=centroid_matrix_64gam(:,1)+i.*centroid_matrix_64gam(:,2);
centroid_vector_256gam=centroid_matrix_256gam(:,1)+i.*centroid_matrix_256gam(:,2);
O//o*********************************************************i**********k*
% At this point, we have the thecretical centroids and our signal (aiready passed from fsecma
% and corrupted with noise)
o/o*****ﬂ'k**x—**w**%******************.-‘r**'k*'k*-k***********?‘.‘***'k*'k**'k****'k*i’
%INITIALIZE
% initialize h
samples=length(x_signal1);
taps=20;
% First filter bank variables declarations
s1=[J;CF1=[];
term1_1=[];term2_1=[];

TERM2_1=[];final_1=[];cost_1=0;COST _1=[];COST_function_1=0;TERM3_1=[};ha_1=[];
h1=zeros(40000,taps);c1=[];

hi(:,taps/2)=1;

cl1=centroid_vector_16gam;

M1=16;

sigma1=0.5*(0.2406);

% Second filter bank variables declaration

S2=[];CF2=[];

term1_2=[J;term2_2=]];
TERM2_2=[};final_2=[};cost_2=0;COST_2=[];COST_function_2=0;TERM3_2=[];ha_2=[];
h2=zeros(40000,taps);c2=[];

h2(;,taps/2)=1;

c2=centroid_vector_64qgam;

M2=64;

sigma2=0.5*(0.1174);

% Third filter bank variables deciaration

s3=[];CF3=[];

term1_3=[};term2_3=[};
TERM2_3=[];final_3=[];cost_3=0;COST_3=[};COST_function_3=0;TERM3_3=[};ha_3=[];
h3=zeros(40000,taps);c3=[];

h3(:,taps/2)=1;

c3=centroid_vector_256gam;

M3=256;

sigma3=0.5%(0.0584) ;

flag=2;

% *** BEGIN AMA ***

for k=taps:taps:samples-taps-10;

x1=flipud(x_signali(k:k+taps-1,1));
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x2=flipud(x_signal2(k:k+taps-1,1));

x3=flipud(x_signal3(k:k+taps-1,1));

flag=flag+1;

% AMA for first filter bank

for count=1:M1;

term1_1=h1(flag,:)*x1-c1(count);
term2_1=(exp((-abs(term1_1)"2)/(2*sigma1/2))*({conj(term1_1))/(sigma1/2))*x1)’;
TERM2_1=[TERM2_1;(term2_1)];
cost_1=(exp(-(abs(term1_1)A2)/(2*(sigma1/2}}));
COST_1=[COST_1;cost_1];

end,

COST_1;

TERM3_1=(1/taps)*sum(TERM2_1);
COST_function_1=(1/taps)*(1-(sum(COST_1)));
CF1=[CF1;COST_function_1];
mi1=g*(norm(h1(flag-1,:)*x1)/(norm(TERM3_1)));%{(norm{x))*2));%
h1(flag,:)=h1(flag-1,:)-mi1*(TERM3_1);

at=h1(flag,:)*tlipud(x1);
s1=[s1;mi1];TERM3_1=[};TERM2_1=[};term1_1=[];term2_1=[];COST_1=[J;
final_1=[final_1;a1];

% AMA for second filter bank -

for count=1:M2;

term1_2=h2(fiag,:)*x2-c2(count);
term2_2=(exp((-abs(term1_2)A2)/(2*sigma2/2))*((conj(term1_2))/(sigma2/2}))*x2)’;
TERM2_2=[TERM2_2;(term2_2)};
cost_2=exp(-(abs(term1_2)A2)/(2*(sigma2/2)));
COST_2=[COST_2;cost_2];

end

TERMB3_2=(1/taps)*sum(TERM2_2);
COST_function_2=(1/taps)*(1-(sum(COST_2)));
CF2=[CF2;COST_function_2];
mi2=g*(norm(h2(flag-1,:)*x2)/(norm(TERM3_2)));
h2(flag,:)=h2(flag-1,:)-mi2*(TERM3_2);
a2=h2(flag,:)*flipud(x2);

s2=[s2;mi2]; TERM3_2=[J;TERM2_2=[];term1_2=[];term2_2=[];COST_2=[];
final_2=[final_2;a2];

% AMA for third filter bank

for count=1:M3;

term1_3=h3(flag,:)*x3-c3(count);
term2_3=(exp((-abs(term1_3)"2)/(2*sigma3/2))*((conj{term1_3))/(sigma3/2))*x3)’;
TERM2_3=[TERM2_3;(term2_3));
cost_3=exp(-(abs(term1_3)"2)/(2*(sigma3/2)));
COST_3=[COST_3;cost_3];

end

TERM3_3=(1/taps)*sum(TERM2_3);
COST_function_3=(1/taps)*(1-(sum(COST_3)));
CF3=[CF3;COST_function_3};
mi3=g*(norm(h3(flag-1,:)*x3)/(norm(TERM3_3)));
h3(flag,:)=h3(flag-1,:)-mi3*(TERM3_3);
a3=h3(flag,:)*flipud(x3);

§3=[s3;mi3];
TERMS3_3=[];TERM2_3=[J;term1_3=[];term2_3=[};COST_3=[J;
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final_3=[final_3;a3];

end
d1=hist(CF1,16);d2=hist(CF2,64);d3=hist(CF3,256);
criterion=[sum(d1(1:4)) sum(d2(1:16)) sum(d3(1:64))];
i=find(criterion==max{(criterion));

if i==1

disp('we have 16QAM’);flag=70;flag_storage=7;
elseif i==

disp('we have 64QAM’);flag=80;flag_storage=8;
elseif i==

disp('we have 256QAM’);flag=90;flag_storage=9;
elseif i(1)==2

disp (‘we have 64QAM or 256QAM’);flag_storage=100;
elseif i(1)==1

disp('we have 16QAM or 64QAM));flag_storage=101;
else

disp('we have 16QAM or 256QAM’);flag_storage=102;
end
return
% END OF FUNCTION

Copy of the complete MATLAB code derived for the study can be found in Hatzichristos

[HATOO] or by contacting the authors.
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APPENDIX E. HIGHER ORDER STATISTICS BEHAVIOR IN NOISE AND
FADING MULTIPATH ENVIRONMENTS

The robustness of higher order statistics in noise and propagation phenomena is a
key to the success of the proposed classifier. Marchand [MAR98] recommends the use of
moments and cumulants for the classification of digital modulations but does not present
any clues about the robustness of these tools in real world situations. These situations are
simulated and presented next. The simulation results are divided into two categories. In
the first category only the additive white Gaussian noise channel is considered. In the
second category, nine different propagation channels (Appendix C, Figures C-1 to C-9)
are used in addition to white noise. Each category includes three different sets of results.
1000, 15000 and 30000 signal samples respectively, are used to indicate the minimum

required samples for clear separation between all features.
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E.1 ADDITIVE WHITE GAUSSIAN NOISE CHANNEL SIMULATIONS
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Figure E1-1. Cy5/ P*

. 1000 samples dataset, 100 trials per SNR level.
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Figure E1-2. E;,, /P, 1000 samples dataset, 100 trials per SNR level.
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Figure E1-3. E, .,/ P?, 1000 samples dataset, 100 trials per SNR level.
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Figure E1-5. C;,/P*, 1000 samples dataset, 100 trials per SNR level.
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Figure E1-6. C, .,/ P*, 15,000 samples dataset, 100 trials per SNR level.

125




trey

]

(
SR 1 .
205K —
L

KK

Zx‘l
]
<

+

4F5K

w60 [
640
4FK <
ié—Q}ﬁtI L _8 2 ] ; : L : : H H

yili3 0B 08
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Figure E1-8. Eg ./ P?, 15,000 samples dataset, 100 trials per SNR level.
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Figure E1-9. E,/P’, 15,000 samples dataset, 100 trials per SNR level.
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Figure E1-10. C ./ P*, 15,000 samples dataset, 100 trials per SNR level.
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Figure E1-11. C,, / P*, 30,000 samples dataset. 100 trials per SNR level.
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Figure E1-13. E .,/ P?, 30,000 samples dataset, 100 trials per SNR level.
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Figure E1-14. E,,,/ P*, 30,000 samples dataset, 100 trials per SNR level.
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Figure E1-15. C,, ./ P’, 30,000 samples dataset, 100 trials per SNR level.



E.2 FADING MULTIPATH CHANNEL SIMULATIONS
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Figure E2-1. C;,/ P*, 1000 samples dataset, 100 trials per SNR level.
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Figure E2-2. E;,, /P, 1000 samples dataset, 100 trials per SNR level.
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Figure E2-3. E, ,,/P*, 1000 samples dataset, 100 trials per SNR level.
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APPENDIX F. SIMULATION RESULTS

Simulation results are divided into three main categories. The first category uses a

rural area propagation model, which was presented in Figure C-10. The second category

represents a small town propagation model, which was presented in Figure C-12, and the

third category an urban propagation model with severe multi-path distortions (Figure C-

15). Each category contains simulations of seven different signal- to-noise ratio levels

from 20dB to 2dB in steps of 3dB. Fifty trials per SNR level and per category have been

created, forming a total of twenty-one confusion matrixes. Overall classification

performances and neural network-only overall classification performances are given in

the top left corner of each confusion matrix, where the neural network-only performance

is shown between parentheses. Figures C-22 to C-28 results present results for the linear

channel simulation case.

99.11%

(100%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM | 64-QAM |256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 46 3 1

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 0 50

Table F-1. Rural area propagation channe] model, SNR=20dB, 50 trials.
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97.78%

(100%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 44 4 2

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 4 46
Table F-2. Rural area propagation channel model, SNR=17dB, 50 trials.

93.56%

(100%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM | 64-QAM 256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 22 19 )

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 1 49
Table F-3. Rural area propagation channel model, SNR=14dB, 50 trials.

86.67%

(100%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM|64-QAM |256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 C 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 49 1

64-QAM 0 0 0 0 0 0 0 49 1

256-QAM 0 0 0 0 0 0 0 9 41

Table F-4. Rural area propagation channel model, SNR=11dB, 50 trials.
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70%

(91.11%){ 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM 256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 40 0 0 10 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 31 19

64-QAM 0 0 0 0 0 0 0 35 15

256-QAM 0 0 0 0 0 0 0 30 20

Table F-5. Rural area propagation channel model, SNR=8dB, 50 trials.
52.44%

(75.11%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK [16-QAM | 64-QAM [256-QAM
2-FSK 0 1 49 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0
8-FSK 0 7 43 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 19 31

64-QAM 0 0 0 0 0 0 0 48 2

256-QAM 0 0 0 0 0 0 0 50 0]

Table F-6. Rural area propagation channel model, SNR=5dB, 50 trials.
46.89% 256-

(69.11%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM|64-QAM| QAM
2-FSK 0 2 48 0 0 0 0 0 0
4-FSK 0 41 9 0 0 0 0 0 0
8-FSK 0 30 20 0 0 0 0 0 0
2-PSK 2 0 0 0 0 48 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0
64-QAM 0 0 0 0 0 0 0 50 0
256-QAM 0 0 0 0 0 0 0 50 0

Table F-7. Rural area propagation channel model, SNR=2dB, 50 trials.
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81.78%

(97.33%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM | 64-QAM 1256-QAM
2-FSK 44 0 0 0 0 6 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 6 44 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 36 14 0

64-QAM 0 0 0 0 0 0 7 12 31

256-QAM 0 0 0 0 0 0 0 18 32

Table F-8. Small town propagation channel model, SNR=20dB, 50 trials.

84.89% 256-
(98.67%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK |16-QAM|64-QAM| QAM
2-FSK 48 0 0 0 0 2 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 3 47 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 1 49 0 0 0
16-QAM 0 0 0 0 0 0 35 11 4
64-QAM 0 0 0 0 0 0 1 22 27
256-QAM 0 0 0 0 0 0 0 19 31

Table F-9. Small town propagation channel model, SNR=17dB, 50 trials.

82.89% 256-
(8.89%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK_| 8-PSK |16-QAM|64-QAM| QAM
2-FSK | 47 0 0 0 2 1 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 2 48 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0
16-QAM| 0 0 0 0 0 0 36 2 12
64-QAM| 0 0 0 0 0 0 0 21 29

256-QAM| 0 0 0 0 0 0 1 28 21

Table F-10. Small town propagation channel model, SNR=14dB, 50 trials.
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86.22%

(98.66%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM |256-QAM
2-FSK 46 0 0 0 0 0 1 1 2
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 2 48 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 33 8 9

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 4 9

Table F-11. Small town propagation channel model, SNR=11dB, 50 trials.
79.33%

(98.44%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM |256-QAM
2-FSK 48 0 0 2 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 5 45 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 10 31 9

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 2 0 0 0 44 4

Table F-12. Small town propagation channel model, SNR=8dB, 50 trials.
36%

(39.11%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM [ 64-QAM |256-QAM
2-FSK 0 0 0 50 0 0 0 0 0
4-FSK 0 22 1 27 0 0 0 0 0
8-FSK 0 0 40 10 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 36 0 0 0 11 3

64-QAM 0 0 0 50 0 0 0 0 0

256-QAM 0 0 0 50 0 0 0 0 0

Table F-13. Small town propagation channel model, SNR=5dB, 50 trials.
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25.56%
(25.56%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM |256-QAM
2.FSK 0 0 0 50 0 0 0 0 0
4-FSK 0 15 5 30 0 0 0 0
8-FSK 0 0 0 50 0 0 0 0 0
2-PSK 1 0 0 0 0 49 0 0 0 |
4-PSK 0 0 0 0 50 0 0 0 0 |
8-PSK 0 0 0 0 0 50 0 0 0 1
16-QAM | 0 0 0 50 0 0 0 0 0 |
64-QAM| 0 0 0 50 0 0 0 0 0
256-QAM| 0 0 0 50 0 0 0 0 0

Table F-14. Small town propagation channel model, SNR=2dB, 50 trials.

84.88%

(96.44%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK | 48 0 0 0 0 2 0 0 0
4-FSK 0 48 2 0 0 0 0 0 0
8-FSK 0 12 38 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0
16-QAM | 0 0 0 0 0 0 35 15 0
64-QAM| 0 0 0 0 0 0 0 42 8
256-QAM| 0 0 0 0 0 0 0 29 21

Table F-15. Urban area propagation channel model, SNR=20dB, 50 trials.

78.89%

(94.22%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM {256-QAM
2-FSK 40 0 0 0 0 10 0 0 0
4-FSK 0 48 2 0 0 0 0 0 0
8-FSK 0 14 36 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 24 26 0

64-QAM 0 0 0 0 0 0 0 44 6

256-QAM 0 0 0 0 0 0 0 37 13

Table F-16. Urban area propagation channel model, SNR=17dB, 50 trials.
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71.11%

(85.78%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM |256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 48 2 0 0 0 0 0 0
8-FSK 0 12 38 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 27 22 1

64-QAM 0 0 0 - 0 0 0 0 45 5

256-QAM 0 0 0 0 0 0 0 38 12

Table F-17. Urban area propagation channel model, SNR=14dB, 50 trials.

69.11%

(83.55%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK [ 16-QAM | 64-QAM j256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0
8-FSK 0 19 31 0 0 0 0 (4] 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 35 15 0

64-QAM 0 0 0 0 0 0 0 49 1.

256-QAM 0 0 0 0 0 0 0 49 1

Table F-18. Urban area propagation channel model, SNR=11dB, 50 trials.
63.33%

(84.66%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM i256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0
8-FSK 0 14 36 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 4 46 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-19. Urban area propagation channel model, SNR=8dB, 50 trials.
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49.11%

(71.33%) | 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 0 1 49 0 0 0 0 0 0
4-FSK 0 37 13 0 0 0 0 0
8-FSK 0 16 34 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 .0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 3 0 0

16-QAM 0 0 0 0 0 0 U 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-20. Urban area propagation channel model, SNR=5dB, 50 trials.
45.78%

(67.55%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK {16-QAM | 64-QAM [256-QAM
2-FSK 0 43 7 0 0 0 0 0 0
4-FSK 0 34 16 0 0 0 0 0 0
8-FSK 0 28 22 0 0 0 0 9 0
2-PSK 50 0 0 0 0 0 0 9 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 2 0 0 48 0

Table F-21. Urban area propagation channel model, SNR=2dB, 50 trials.
90.22%

(95.33%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [|256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 49 1 0 0 0 0 0 0
8-FSK 5 15 30 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 50 0 0

64-QAM 0 0 0 0 0 0 1 39 10

256-QAM 0 0 0 0 0 0 3 9 38

Table F-22. Linear channel model ¢=[1,0,0.5], SNR=20dB, 50 trials.
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90.89%

(95.78%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK [16-QAM | 64-QAM |256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 1 18 31 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 50 0 0

64-QAM 0 0 0 0 0 0 1 34 15

256-QAM 0 0 0 0 0 0 0 6 44

Table F-23. Linear channel model ¢=[1,0,0.5], SNR=17dB, 50 trials.
82.66%

(94.22%); 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 49 1 0 0 0 0 0 0
8-FSK 0 25 25 0 0 Y] 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 46 0 4

64-QAM 0 0 0 0 0 0 1 10 39

256-QAM 0 0 0 0 0 0 0 8 42
Table F-24. Linear channel model c=[1,0,0.5], SNR=14dB, 50 trials.
69.11%

(93.11%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 39 11 0 0 0 0 0 0
8-FSK 0 18 32 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 2 0 0 48 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 24 3 23

64-QAM 0 0 0 0 0 0 0 13 37

256-QAM 0 0 0 0 0 0 0 45 5

Table F-25. Linear channel model ¢=[1,0,0.5], SNR=11dB, 50 trials.
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66.44%

(88.66‘;:) 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 25 25 0 0 0 0 0 0
8-FSK 0 26 24 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0
16-QAM 0 0 0 0 0 0 0 4 46

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-26. Linear channel model ¢=[1,0,0.5], SNR=8dB, 50 trials.
60%

(82.22%)! 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK | 16-QAM | 64-QAM [256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 37 13 0 0 0 0 0 0
8-FSK 0 17 33 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-27. Linear channel model c=[1,0,0.5], SNR=5dB, 50 trials.
38%

(41.55%)| 2-FSK | 4-FSK | 8-FSK | 2-PSK | 4-PSK | 8-PSK {16-QAM | 64-QAM [256-QAM
2-FSK 0 50 0 0 0 0 0 0 0
4-FSK 0 42 . 8 0 0 0 0 0 0
8-FSK 0 23 27 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 34 0 0 16 0

64-QAM 0 0 0 0 22 26 0 2 0

256-QAM 0 0 0 0 26 24 0 0 0

Table F-28. Linear channel model c=[1,0,0.5], SNR=2dB, 50 trials.
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